Math 1272: Calculus II Final exam review

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Final Exam Information

- May 9, 12pm-3pm
- 18 questions
- 8 multiple choice (a)-(e)
- 10 written questions
- Exam covers all sections listed on the schedule http://www-users.math.umn.edu/~jwcalder/1272S19/schedule.html except for $\mathbf{8 . 3}, \mathbf{9 . 4}, \mathbf{9 . 6}, \mathbf{1 0 . 5}$, orthogonal trajectories.
- Midterm exams with solutions are available on the course website (linked above). This can be helpful for review.

Chapter 7

Topics: Integration (by parts, substitution, partial fractions, trig substitution, trig integrals, approximate integration)

Exampe: Determine the value of

$$
\int_{0}^{1} x^{2} \cos x d x
$$

Chapter 8

Topics: Arclength, surface of revolution,

Exampe: Find the area of the surface obtained by rotating the curve

$$
y=x^{3}, \quad 0 \leq x \leq 2
$$

about the x-axis.

Chapter 9

Topics: Differential equations (Euler's method, separable and linear equations)

Example: Find the solution of the differential equation

$$
\frac{d y}{d x}=\frac{x \sin x}{y},
$$

satisfying $y(0)=-1$.

Chapter 10

Topics: Parametric equations, polar coordinates, area and arclength in polar coordinates.

Example: Set up (but do not evaluate) the integral computing the arclength of one loop of the four-leaved rose

$$
r=\cos (2 \theta)
$$

Chapter 11

Topics: Sequences and series, tests for convergence, power series, Taylor and Maclaurin series

Example: Determine whether the series

$$
2-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}+\cdots
$$

converges absolutely, converges conditionally, or diverges.

Chapter 12

Topics: Dot and cross products, lines and planes.

Example: Find a vector orthogonal (perpendicular) to both $\mathbf{a}=\langle 1,2,3\rangle$ and $\mathbf{b}=\langle 1,0,1\rangle$.

Example: Find an equation for the plane containing the lines

$$
x=1+t, y=1-t, z=1
$$

and

$$
x=1+2 t, y=1+3 t, z=1+t .
$$

