Math 1272: Calculus II Final exam review

Instructor: Jeff Calder Office: 538 Vincent Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Final Exam Information

- May 9, 12pm–3pm
- 18 questions
 - 8 multiple choice (a)–(e)
 - 10 written questions
- Exam covers all sections listed on the schedule http://www-users.math.umn.edu/~jwcalder/1272S19/schedule.html except for 8.3, 9.4, 9.6, 10.5, orthogonal trajectories.
- Midterm exams with solutions are available on the course website (linked above). This can be helpful for review.

Topics: Integration (by parts, substitution, partial fractions, trig substitution, trig integrals, approximate integration)

Exampe: Determine the value of

$$\int_0^1 x^2 \cos x \, dx.$$

Topics: Arclength, surface of revolution,

Exampe: Find the area of the surface obtained by rotating the curve

$$y = x^3, \quad 0 \le x \le 2$$

about the *x*-axis.

Topics: Differential equations (Euler's method, separable and linear equations)

Example: Find the solution of the differential equation

$$\frac{dy}{dx} = \frac{x\sin x}{y},$$

satisfying y(0) = -1.

Topics: Parametric equations, polar coordinates, area and arclength in polar coordinates.

Example: Set up (but do not evaluate) the integral computing the arclength of one loop of the four-leaved rose

 $r = \cos(2\theta).$

Topics: Sequences and series, tests for convergence, power series, Taylor and Maclaurin series

Example: Determine whether the series

$$2 - \frac{2}{\sqrt{2}} + \frac{2}{\sqrt{3}} - \frac{2}{\sqrt{4}} + \cdots$$

converges absolutely, converges conditionally, or diverges.

Topics: Dot and cross products, lines and planes.

Example: Find a vector orthogonal (perpendicular) to both $\mathbf{a} = \langle 1, 2, 3 \rangle$ and $\mathbf{b} = \langle 1, 0, 1 \rangle$.

Example: Find an equation for the plane containing the lines

$$x = 1 + t, y = 1 - t, z = 1$$

and

$$x = 1 + 2t, y = 1 + 3t, z = 1 + t.$$