Math 1272: Calculus II
 7.4 Integration of rational functions

Instructor: Jeff Calder Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Integration of rational functions

We now study integration of rational functions

$$
\int \frac{P(x)}{Q(x)} d x
$$

where P, Q are polynomials

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1} \cdots+a_{1} x+a_{0}
$$

and

$$
Q(x)=b_{m} x^{m}+b_{m-1} x^{m-1} \cdots+b_{1} x+b_{0}
$$

Integration of rational functions
Step 1: If $\operatorname{deg}(P) \geq \operatorname{deg}(Q)$ then divide (factor) so that

$$
\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)} \quad \text { Easy to }
$$

where $\operatorname{deg}(R)<\operatorname{deg}(Q)$.
Example 1. Compute $\int \frac{x^{3}-2 x+1}{x+1} d x$.

$$
\frac{x^{3}-2 x+1=(x+1)\left(x^{2}-x-1\right) x+2}{\frac{x^{3}-2 x+1}{x+1}=x^{2}-x-1+\frac{2}{x+1}}
$$

Integration of rational functions
Step 2: Factor the denominator $Q(x)$ into linear and quadratic terms.
Example 2. Factor $Q(x)=x^{4}-9$.

$$
\begin{aligned}
& Q(x)=\left(x^{2}-3\right)\left(x^{2}+3\right) \\
& b=0 \\
& =(x-\sqrt{3})(x+\sqrt{3})\left(x^{2}+3\right)^{a=1} \begin{array}{l}
c=3
\end{array} \\
& \text { Linear } \\
& \text { irreducible } \\
& \text { quadratic } \\
& a x^{2}+b x+c: \quad b^{2}-4 a c<0
\end{aligned}
$$

Integration of rational functions

By steps 1 and 2 we have

$$
\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)},
$$

where $\operatorname{deg}(R)<\operatorname{deg}(Q)$, and we have factored Q.
Step 3: Use Partial Fractions to express $R(x) / Q(x)$ as a sum of partial fractions of the form

$$
\frac{A}{(a x+b)^{i}} \text { or } \frac{A x+B}{\left(a x^{2}+b x+c\right)^{j}} .
$$

Step 4: Integrate term by term.

Integration of rational functions

By steps 1 and 2 we have

$$
\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)},
$$

where $\operatorname{deg}(R)<\operatorname{deg}(Q)$, and we have factored Q.
Step 3: Use Partial Fractions to express $R(x) / Q(x)$ as a sum of partial fractions of the form

$$
\frac{A}{(a x+b)^{i}} \text { or } \frac{A x+B}{\left(a x^{2}+b x+c\right)^{j}} \text {. }
$$

Step 4: Integrate term by term.
The procedure in step 3 depends on the factorization of Q.

Partial fractions
Case I: Q is a product of distinct linear factors

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{k} x+b_{k}\right) .
$$

In this case there exists A_{1}, \ldots, A_{k} such that

$$
\frac{R(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{2}}{a_{2} x+b_{2}} .
$$

Example 3. Integrate $\int \frac{x^{2}-x+2}{2 x^{3}+3 x^{2}+x} d x . \quad Q=2 x^{3}+3 x^{2}+$

$$
\left.\begin{array}{rl}
Q(x) & =x\left(2 x^{2}+3 x+1\right) \mid x
\end{array}\right)=\frac{-3 \pm \sqrt{9-8}}{4}+\frac{x(x+1)}{x=-1} \frac{(2 x+1)}{x=-\frac{1}{2}} \quad \begin{aligned}
& =\frac{1}{4}(-3 \pm 1) \\
& =-\frac{1}{2},-1
\end{aligned}
$$

$$
\frac{x^{2}-x+2}{2 x^{3}+3 x^{2}+x}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{2 x+1}
$$

$$
\begin{aligned}
& =\underbrace{2 x^{3}+3 x^{2}+x}_{=1}=-\underbrace{(2 A+2 B+C)} x^{2}+(3 A+B+C) x \\
& x^{2}-x+2=\underbrace{A}_{=2}
\end{aligned}
$$

$$
\begin{array}{ll}
2 A+2 B+C=1 & A=2 \\
3 A+B+C=-1 &
\end{array}
$$

Plus in $A=2$

$$
\begin{gathered}
\frac{-(B+C=-7)}{B=-3+7=4} \\
\frac{B=-7-B=-7-4=-11}{} \begin{array}{l}
\text { Fasy rate } \\
\text { to inted } \\
\frac{x^{2}-x+2}{2 x^{3}+3 x^{2}+x}
\end{array}=\frac{2}{x}+\frac{4}{x+1}-\frac{11}{2 x+1}
\end{gathered}
$$

Partial fractions
Case II: Q is a product of linear factors, some of which are repeated:

$$
Q(x)=\left(a_{1} x+b_{1}\right)^{r}\left(a_{2} x+b_{2}\right) \cdots\left(a_{k} x+b_{k}\right) .
$$

In the partial fraction expansion for the $\left(a_{1} x+b_{1}\right)^{r}$ term, we use

$$
\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\cdots+\frac{A_{r}}{\left(a_{1} x+b_{1}\right)^{r}} .
$$

Example 4. Integrate $\int \frac{x}{x^{3}-x^{2}-x+1} d x$.
$Q(x)=x^{3}-x^{2}-x+1$

$$
\begin{aligned}
Q(x) & =(x+1)\left(x^{2}-2 x+1\right) \\
& =(x+1)(x-1)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{x}{x^{3}-x^{2}-x+1} & =\left(\frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}\right) \frac{(x+1)(x-1)^{2}}{(x+1)(x-1)^{2}} \\
& =\frac{A(x-1)^{2}+B(x+1)(x-1)+C(x+1)}{(x+1)(x-1)^{2}} \\
x & =A\left(x^{2}-2 x+1\right)+B\left(x^{2}-1\right)+C(x+1) \\
& =\underbrace{(A+B) x^{2}}_{=0}+\underbrace{(C-2 A)}_{=1} x+\underbrace{A-B+C}_{=0}
\end{aligned}
$$

$$
\begin{aligned}
& A+B=0, \quad C-2 A=1, \quad A-B+C=0 \\
& B=-A, C=2 A+1 \\
& A-B+C=0 \\
& A+A+2 A+1=0 \rightarrow 4 A=-1 \\
& A=-\frac{1}{4} \\
& \frac{x}{x^{3}-x^{2}-x+1}=\frac{-1 / 4}{x+1}+\frac{1 / 4}{x-1}+\frac{1 / 2}{(x-1)^{2}} \\
& B=\frac{1}{4} \\
& c=\frac{1}{2} \\
& \text { Integrate term-by-term. }
\end{aligned}
$$

Partial fractions
Case III: Q contains an irreducible non-repeated quadratic factor

$$
a x^{2}+b x+c
$$

The partial fraction expansion will have a term of the form

$$
\frac{A x+B}{a x^{2}+b x+c} .
$$

Example 5. Integrate $\int \frac{x^{2}+x-3}{x^{3}+9 x} d x . \quad Q(x)=x \underbrace{\left(x^{2}+9\right)}_{\text {irreducible }}$

$$
\frac{x^{2}+x-3}{x^{3}+9 x}=\left(\frac{A}{x}+\frac{B x+C}{x^{2}+9}\right) \frac{x\left(x^{2}+9\right)}{x\left(x^{2}+9\right)} \quad \begin{gathered}
\text { irreducinu } \\
\text { quadratic }
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{A\left(x^{2}+9\right)+(B x+C) x}{x^{3}+9 x} \\
x^{2}+x-3 & =\underbrace{(A+B)}_{=1} x^{2}+\underbrace{C}_{=1} x+\underbrace{9 A}_{=-3} \\
C=1, \quad A & =-\frac{1}{3}, A+B=1, \quad B=1-A \\
& =1+\frac{1}{3} \\
\frac{x^{2}+x-3}{x^{3}-9 x} & =\frac{-1 / 3}{x}+\frac{4 / 3}{x^{2}+9} \quad
\end{aligned}
$$

Integrate term by term

$$
\begin{aligned}
& \int \frac{\frac{4}{3} x+1}{x^{2}+9} d x=\frac{4}{3} \int \frac{x}{x^{2}+9} d x+\int \frac{1}{x^{2}+9} d x \\
& \iint \frac{x}{x^{2}+9} d x=\int \frac{1 / 2 d u}{u+9}=\frac{1}{2} \int \frac{1}{u+9} d u \\
& u=x^{2}, d u=2 x d x=\frac{1}{2} \ln |u+9| \\
&=\frac{1}{2} \ln \left|x^{2}+9\right| \\
& \int \frac{1}{x^{2}+9} d x=\frac{1}{9} \int \frac{1}{\left(\frac{x}{3}\right)^{2}+1} d x \\
& u=\frac{x}{3} \\
& d u=\frac{1}{3} d x=\frac{3}{9} \int \frac{1}{u^{2}+1} d u=\frac{1}{3} \arctan \left(\frac{x}{3}\right)
\end{aligned}
$$

Partial fractions
Case IV: Q contains a repeated irreducible quadratic factor

$$
\left(a x^{2}+b x+c\right)^{r}
$$

The partial fraction expansion will have a term of the form

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{1} x+B_{1}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{1} x+B_{1}}{\left(a x^{2}+b x+c\right)^{r}}
$$

Example 6. Integrate $\int \frac{x^{3}-x-1}{x\left(x^{2}+1\right)^{2}} d x . Q(x)=x\left(x^{2}+1\right)^{2}$

$$
\begin{aligned}
\frac{x^{2}-x-1}{x\left(x^{2}+1\right)^{2}} & =\frac{A}{x}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{\left(x^{2}+1\right)^{2}} \\
& =000 \text { exercise. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { How to find } \int \frac{x+1}{\left(x^{2}+1\right)^{2}} d x \text { ? } \\
& C_{7}=\underbrace{\int \frac{x}{\left(x^{2}+1\right)^{2}}}_{(\geqslant)} d x+\underbrace{\int \frac{1}{\left(x^{2}+1\right)^{2}}} d x \\
& \begin{array}{l}
\Delta u=x^{2} \\
d u=2 x d x
\end{array}>=\int \frac{\frac{1}{2} d u}{(u+1)^{2}}=-\frac{1}{2(u+1)}+C \\
& (\phi)=\frac{\text { Tris suk. }}{x=\tan \theta} \quad \begin{array}{l}
d x=\sec ^{2} \theta d \theta
\end{array} \quad=\int \frac{\sec ^{2} \theta d \theta}{\left(\tan ^{2} \theta+1\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{\sec ^{2} \theta d \theta}{\sec ^{4} \theta} \\
& =\int \cos ^{2} \theta d \theta \ldots
\end{aligned}
$$

