Math 1272: Calculus II 7.7 Approximate integration

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Approximate integration

Some functions are impossible to integrate exactly:

$$
\int_{0}^{1} e^{-x^{2}} d x \text { or } \int_{-1}^{1} \sqrt{1+x^{3}} d x
$$

Thus, we need some tools for approximating the integral with a computer.

Idea: To approximate $\int_{a}^{b} f(x) d x$, split up the interval $a \leq x \leq b$ into small pieces, and approximate f by simpler functions (e.g., lines, parabolas, etc.) on each piece that you can integrate exactly.
$-R_{7}$
Midpoint rule L_{7}

$$
\int_{a}^{b} f(x) d x
$$

On iterval $\left[x_{i}, x_{i+1}\right]$ approximate $f(x) \approx f\left(x_{i}\right)$
Then

$$
\begin{aligned}
\int_{x_{i}}^{x_{i+1}} f(x) d x & \approx \int_{x_{i}}^{x_{i+1}} f\left(x_{i}\right) d x \\
& =f\left(x_{i}\right) \int_{x_{i}}^{x_{i+1}} d x=\Delta x f\left(x_{i}\right)
\end{aligned}
$$

Left-point rule

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx L_{7} & =\Delta x f\left(x_{0}\right)+\Delta x f\left(x_{1}\right)+\cdots \\
& +\cdots \Delta x f\left(x_{5}\right)+\Delta x f\left(x_{6}\right) \\
= & \Delta x\left(f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{6}\right)\right)
\end{aligned}
$$

Right point rule $f(x) \approx f\left(x_{i+1}\right)$ on $\left[x_{i}, x_{i+1}\right]$

$$
R_{7}=\Delta x\left(f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{6}\right)+f\left(x_{2}\right)\right)
$$

Midpoint rule

The midpoint rule in general is

$$
\int_{a}^{b} f(x) d x \approx M_{n}=\Delta x\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+\cdots+f\left(\bar{x}_{n}\right)\right]
$$

where

$$
\Delta x=\frac{b-a}{n}
$$

and

$$
\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)=\text { midpoint of }\left[x_{i-1}, x_{i}\right] .
$$

Midpoint rule
Example 1. Use the midpoint rule with $n=3$ to approximate $\int_{0}^{1} 3 x^{2} d x$.

$$
\begin{aligned}
& \Delta x=\frac{1-0}{3}=\frac{1}{3}, \quad \frac{1}{x_{0}=0} \cdot \dot{x}_{1}=\frac{1}{3} \cdot x_{1}=\frac{2}{3} \cdot 1=x_{3} \\
& \int_{0}^{1} 3 x^{2} d_{x} \approx M_{3}=\Delta x\left(f\left(\frac{1}{6}\right)+f\left(\frac{1}{2}\right)+f\left(\frac{5}{6}\right)\right) \\
&=\frac{3}{3}\left(\frac{1}{6^{2}}+\frac{1}{2^{2}}+\frac{5^{2}}{6^{2}}\right) \\
&=\frac{1}{36}+\frac{1}{4}+\frac{25}{36}=\frac{35}{36}
\end{aligned}
$$

Trapezoid rule

$$
\left.\begin{array}{rl}
L_{5} & =\Delta x\left(f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right) \\
R_{5} & =\Delta x\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)+f\left(x_{5}\right)\right) \\
T_{5} & =\frac{R_{5}+L_{5}}{2} \\
= & \frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)\right. \\
+2 f\left(x_{4}\right)+f\left(x_{5}\right)
\end{array}\right)
$$

Left pt $\hat{\sim} \Delta x f\left(x_{i}\right)$, Risht $\approx \Delta x f\left(x_{i+1}\right)$

$$
\begin{aligned}
\underline{\text { Trapezord }} & =\frac{\Delta x f\left(x_{i}\right)+\Delta x f\left(x_{i+1}\right)}{2} \\
& =\frac{\Delta x f\left(x_{i}\right)+\Delta x\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)}{2}
\end{aligned}
$$

Compete the square

$$
\underbrace{x^{2}+b x}+c=\left(x+\frac{b}{2}\right)^{2}+c-\frac{b^{2}}{4}
$$

Ex:

$$
\begin{aligned}
x^{2}+10 x+2 & =(x+5)^{2}+2-5^{2} \\
& =(x+5)^{2}-23
\end{aligned}
$$

Trapezoid rule

The trapezoid rule in general is
$\int_{a}^{b} f(x) d x \approx T_{n}=\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$,
where

$$
\Delta x=\frac{b-a}{n}
$$

and

$$
x_{i}=a+i \Delta x
$$

Trapezoid rule

Example 2. Use the trapezoid rule with $n=3$ to approximate $\int_{0}^{1} 3 x^{2} d x$.

Error bounds
Left-pint rule

How large is the error $\left(\sum_{?}^{x_{i}}{ }^{x_{x+1}} x_{i+1}\right.$
Assume $\left|f^{\prime}(x)\right| \leq K$ for $a \leq x \leq b$ Error contamal in triangle

$$
\leq \frac{b h}{2}=\frac{k \Delta x \Delta x}{2}=\frac{k}{2} \Delta x^{2}
$$

we have n intervals, $\Delta x=\frac{b-a}{n}$

$$
\begin{aligned}
\text { Total error } & \leq \frac{k}{2} \Delta x^{2} \cdot n \\
& =\frac{k}{2}\left(\frac{b-a}{n}\right)^{2} n \\
E_{L} & =\frac{k(b-a)^{2}}{2 n^{1}} \quad \text { First order }
\end{aligned}
$$

Same far right-pount rule

Error bounds for Trapezoid and Midpoint rules
Suppose $\left|f^{\prime \prime}(x)\right| \leq K$ for all $a \leq x \leq b$. If E_{T} and E_{M} are the errors in the Trapezoid and Midpoint rules, then

$$
\begin{aligned}
& \left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \text { and }\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}} . \\
& \text { second ede accurate. }
\end{aligned}
$$

Example 3. How large should we make n so that the error in the Trapezoid rule for computing $\int_{0}^{1} \sin (x) d x$ is less than 0.000001 ? Compare with the left or right point rules.

$$
\begin{aligned}
& \quad 10^{-6}=\frac{k(b-a)^{3}}{12 n^{2}}=\frac{1}{12 n^{2}} \rightarrow n^{2}=\frac{10^{6}}{12} \\
& n=1=\sqrt{\frac{10^{6}}{12}} \approx \frac{1000}{3}
\end{aligned}
$$

left pt rule

$$
\begin{aligned}
\frac{1}{2 n}=10^{-6} \leadsto n & =\frac{10^{6}}{2} \\
& =500,00 n
\end{aligned}
$$

Simpson's rule

Simpson's rule approximates f by parabolas in each interval $\left[x_{i}, x_{i+1}\right]$.

In general, Simpson's rule is

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx S_{n}=\frac{\Delta x}{3}\left[f\left(x_{0}\right)+\right. & 4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots \\
& \left.+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

where n is even and

$$
\Delta x=\frac{b-a}{n} .
$$

Simpson's rule
Example 4. Use Simpson's rule with $n=4$ to approximate $\int_{0}^{1} 3 x^{2} d x$.

$$
\begin{aligned}
\Delta x & =\frac{1-0}{4}=\frac{1}{4}, x_{0}=0, x_{1}=\frac{1}{4}, x_{2}=\frac{1}{2}, x_{3}=\frac{3}{4} \\
S_{4} & =\frac{\Delta x}{3}\left(f(0)+4 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+4 f\left(\frac{3}{4}\right)+f(1)\right) \\
& =\Delta x\left(0+4 \cdot \frac{1}{4^{2}}+2 \cdot \frac{1}{2^{2}}+4 \cdot \frac{3^{2}}{4^{2}}+1\right) \\
& =\frac{1}{4}\left(\frac{1}{4}+\frac{1}{2}+\frac{9}{4}+1\right) \\
& =\frac{1}{4}\left(\frac{1+2+9+4}{4}\right)=\frac{1}{4}\left(\frac{16}{4}\right)=\frac{4}{4}=1
\end{aligned}
$$

Error bounds for Simpson's rule

Suppose $\left|f^{(4)}(x)\right| \leq K$ for all $a \leq x \leq b$. If E_{S} is the error involved in Simpson's rule, then

$$
\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}
$$

$$
4^{\text {th }} \text { order }
$$

Numerical examples

1. Area of a circle

$$
\begin{aligned}
& E=\frac{C}{n^{k}}, \log (E)=\log \left(\frac{C}{n^{k}}\right) \pi=4 \int_{0}^{1} \sqrt{1-x^{2}} d x \\
& \log \left(\frac{C}{n^{k}}\right) \\
& =\log (C) \\
& -\log \left(n^{k}\right) \\
& =\log (C) \quad 10^{-2} \\
& -k \log (u) \\
&
\end{aligned}
$$

2. Integral of $1 / x$:

$$
1=\int_{1}^{e} \frac{1}{x} d x
$$

