Math 1272: Calculus II 8.1 Arclength

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Arclength of a curve $(x, f(x))$

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{\Delta x} \\
h & =f\left(x_{i+1}\right)-f\left(x_{i}\right) \\
& \approx \Delta x f^{\prime}\left(x_{i}\right)
\end{aligned}
$$

Py thagorean therem

$$
\begin{aligned}
\Delta s^{2} & =\Delta x^{2}+h^{2} \\
& =\Delta x^{2}+\Delta x^{2}\left[f^{\prime}\left(x_{i}\right)\right]^{2} \\
& =\Delta x^{2}\left(1+\left(f^{\prime}\left(x_{i}\right)\right)^{2}\right)
\end{aligned}
$$

Hence

$$
\Delta s_{i}=\Delta x \sqrt{1+\left(f^{\prime}\left(x_{i}\right)\right)^{2}}
$$

Sum over all n intervals, $b x=\frac{b-a}{n}$

$$
\begin{gathered}
\text { Arclenth of } f \approx \sum_{i=1}^{n} \Delta x \sqrt{1+\left[f^{\prime}\left(x_{i}\right)\right)^{2}}
\end{gathered}
$$

As $n \rightarrow \infty, \Delta x \rightarrow 0$, get a Riemann sum for the integral

$$
L(f)=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x
$$

Arclength of f from $x=a$ to $x=b$.

Arclength of a curve

The arclength of a curve $y=f(x), a \leq x \leq b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

provided f^{\prime} is continuous on $[a, b]$.

Arclength of a curve
Example 1. Show that the arclength of a circle of radius r

$$
x^{2}+y^{2}=r^{2}
$$

is $L=2 \pi r$.

$$
\begin{aligned}
& L=4 \int_{0}^{r} \sqrt{1+f^{\prime}(x)^{2}} d x \quad f(x)=y=\sqrt{r^{2}-x^{2}} \\
& f^{\prime}(x)=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-\frac{1}{2}} \cdot(-2 x)=\frac{-x}{\sqrt{r^{2}-x^{2}}} \\
& 1+f^{\prime}(x)^{2}=1+\frac{x^{2}}{r^{2}-x^{2}}
\end{aligned}
$$

$$
=\frac{r^{2}-x^{2}+x^{2}}{r^{2}-x^{2}}=\frac{r^{2}}{r^{2}-x^{2}}
$$

So

$$
\begin{aligned}
L & =4 \int_{0}^{r} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} d x \sqrt{\arcsin } \begin{array}{l}
\sin ^{-1}(x) \\
\sin ^{2}(x)
\end{array} \\
& =4 r \int_{0}^{r} \frac{1}{\sqrt{r^{2}-x^{2}}} d x{\left.\arcsin \left(\frac{x}{r}\right)\right]_{0}^{5}}=4 r \operatorname{arc}
\end{aligned}
$$

$$
\begin{aligned}
& =4 r(\arcsin (1)-\arcsin (0)) \\
& =4 r\left(\frac{\pi}{2}-0\right)=2 \pi r
\end{aligned}
$$

Arclength of a curve
We can also compute the length of curves $x=g(y)$ for $c \leq y \leq d$ by

$$
L=\int_{a}^{b} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y .
$$

Example 2. Find the arclength of the parabola $y^{2}=x$ from $(0,0)$ to $(1,1)$.
Here $g(y)=y^{2}, g^{\prime}(y)=2 y$.

Trig sub $y=\frac{1}{2} \tan \theta$

$$
\begin{aligned}
& \text { ant } d y=\frac{1}{2} \sec ^{2} \theta d \theta \\
& \frac{1}{4}+y^{2}=\frac{1}{4}+\frac{1}{4} \tan ^{2} \theta \\
&=\frac{1}{4}\left(1+\tan ^{2} \theta\right)=\frac{\sec ^{2} \theta}{4} \\
& L=2 \int_{0}^{\tan ^{-1}(2)} \frac{\sec \theta}{2} \cdot \frac{1}{2} \sec ^{2} \theta d \theta \\
& \text { Limits } \tan \theta: 0 \rightarrow 2 \\
& \theta: 0 \rightarrow \tan ^{-1}(2)
\end{aligned}
$$

$$
\begin{aligned}
& L=\frac{1}{2} \int_{0}^{\tan ^{-1}(2)} \sec ^{3} \theta d \theta . \quad \int u d v=u v-\int v d u \\
& \begin{aligned}
& \int \sec ^{3} \theta d \theta=\sec \theta \tan \theta-\int \tan ^{2} \theta \sec \theta d \theta \\
&= \sec \theta \tan \theta-\int\left(\sec ^{2} \theta-1\right) \sec \theta d \theta \\
& \begin{aligned}
& u=\sec \theta \\
& d v=\sec ^{2} \theta d \theta \\
& d u=\tan \theta \sec \theta \tan \theta-\int \sec ^{3} \theta d \theta \\
& v=\tan \theta
\end{aligned}
\end{aligned} \quad+\int \sec \theta d \theta
\end{aligned}
$$

Add $\int \sec ^{3} \theta d \theta$ to botn

$$
\begin{aligned}
& 2 \int \sec ^{3} \theta d \theta=\sec \theta \tan \theta+\int \sec \theta d \theta \\
& \int \sec ^{3} \theta d \theta=\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \int \sec \theta d \theta \\
& \int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

How

$$
\begin{aligned}
\int \sec ^{3} \theta d \theta=\frac{1}{2} \sec \theta \tan \theta+ & \frac{1}{2} \ln |\sec \theta+\tan \theta| \\
& +C
\end{aligned}
$$

Plug in limits.... $\theta=\tan ^{-1}(2)$

Arclength function

The arclength function $s(x)$ of a curve $y=f(x)$ is defined by

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t .
$$

$$
\begin{gathered}
S(x)=\int_{a}^{x} \sqrt{1+f^{\prime}(t)^{2}} d t \\
\left.\frac{d S}{d x}=S^{\prime}(x)=\sqrt{1+f^{\prime}(x)^{2}} \quad \begin{array}{c}
\text { (hundamazol } \\
\text { Theorem if } \\
\text { Caluluc }
\end{array}\right)
\end{gathered}
$$

Write $y=f(x), \quad \frac{d y}{d x}=f^{\prime}(x)$

$$
\begin{aligned}
& \left(\frac{d s}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2} \\
& \quad d s^{2}=d x^{2}+d y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d s}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2} \\
& d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Arclength function

The arclength function $s(x)$ satisfies

$$
d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

and

$$
d s^{2}=d x^{2}+d y^{2}
$$

In this way, we have the compact formula for arclength

$$
L=\int_{a}^{b} d s
$$

Arclength function
Example 3. Find the arclength function for the curve $y=x^{2}-\frac{1}{8} \ln x$ taking $(1,1)$ as the starting point.

$$
\begin{aligned}
\frac{d y}{d x} & =2 x-\frac{1}{8 x} \\
1+\left(\frac{d y}{d x}\right)^{2} & =1+\left(2 x-\frac{1}{8 x}\right)^{2} \\
& =1+4 x^{2}-\frac{1}{2}+\frac{1}{64 x^{2}} \\
& =4 x^{2}+\frac{1}{2}+\frac{1}{64 x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(2 x+\frac{1}{8 x}\right)^{2} \\
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} & =2 x+\frac{1}{8 x} \\
S(x) & =\int_{1}^{x} 2 t+\frac{1}{8 t} d t \\
& \left.=t^{2}+\frac{1}{8} \ln t\right]_{1}^{x} \\
S(x) & =x^{2}+\frac{1}{8} \ln x-1
\end{aligned}
$$

what is $\sec \left(\tan ^{-1}(2)\right) ?=\sqrt{5}$

$$
\theta=\tan ^{-1}(2), \quad 2=\tan \theta, \sec (\theta)
$$

2

$$
\begin{aligned}
& \cos \theta=\frac{1}{\sqrt{5}} \\
& \sec \theta=\frac{1}{\cos \theta}=\sqrt{5}
\end{aligned}
$$

