Math 222A - Homework 2 (Due Friday Sept 18)

1. Evans: Section 2.5, Problem 3
2. (a) Give a direct proof that if $u \in C^{2}(U) \cap C(\bar{U})$ is harmonic within a bounded open set U, then

$$
\max _{\bar{U}} u=\max _{\partial U} u .
$$

[Hint: Define $u_{\varepsilon}:=u+\varepsilon|x|^{2}$ for $\varepsilon>0$ and show that u_{ε} cannot attain its maximum over \bar{U} at an interior point.] ${ }^{1}$
(b) Show that if $u \in C^{2}(U) \cap C(\bar{U})$ satisfies

$$
-\Delta u+c u=0 \quad \text { in } U \quad(c \geq 0)
$$

then

$$
\max _{\bar{U}}|u|=\max _{\partial U}|u| .
$$

3. Evans: Section 2.5, Problem 5 (Problem 4 in 1st edition)
4. Let $u \in C^{2}(\bar{U})$ be harmonic in an open and bounded set U. Show that

$$
\max _{\bar{U}}|D u|=\max _{\partial U}|D u| .
$$

5. Let u be harmonic in an open and bounded set U. Use the mean value formula and divergence theorem to show that

$$
|D u(x)| \leq \frac{n}{\operatorname{dist}(x, \partial U)}\left(\sup _{U} u-u(x)\right) \quad \text { for all } x \in U .
$$

In particular, if u is nonegative throughtout U, show that

$$
|D u(x)| \leq \frac{n}{\operatorname{dist}(x, \partial U)} u(x) \quad \text { for all } x \in U .
$$

6. Evans: Section 2.5, Problem 6 (Problem 5 in 1st edition)
7. Recall Poisson's kernel for the half-space \mathbb{R}_{+}^{n}

$$
K(x, y)=\frac{2 x_{n}}{n \alpha(n)} \frac{1}{|x-y|^{n}} \quad\left(x \in \mathbb{R}_{+}^{n}, y \in \partial \mathbb{R}_{+}^{n}\right)
$$

Show that

$$
\begin{equation*}
\int_{\partial \mathbb{R}_{+}^{n}} K(x, y) d y=1 \quad \text { for all } x \in \mathbb{R}_{+}^{n} \tag{1}
\end{equation*}
$$

[Hint: Let $A_{n}(x)$ denote the left hand side of (1). First show that $A_{n}(x)=A_{n}$ is independent of x. Then set $x=\left(0, \ldots, 0, x_{n}\right)$ and show that

$$
A_{n}=\frac{2}{n \alpha(n)} \int_{\partial \mathbb{R}_{+}^{n}} \frac{x_{n}}{|x-y|^{n}} d S(y)=\frac{2}{n \alpha(n)} \frac{2}{\pi} \int_{0}^{\infty} \frac{1}{1+x_{n}^{2}} \int_{\mathbb{R}^{n-1}} \frac{x_{n}}{\left(|y|^{2}+x_{n}^{2}\right)^{n / 2}} d y d x_{n}
$$

Then switch to polar coordinates.]

[^0]8. Let $U \subset \mathbb{R}^{n}$ be open and bounded. Suppose that $u \in C(U)$ satisfies the mean value property
$$
u(x)=f_{B(x, r)} u d y,
$$
for all $B(x, r) \subset U$. Show that u is harmonic in U. [Hint: Use Poisson's formula for a ball and the maximum principle.]
9. Show that the uniform limit of a sequence of harmonic functions is harmonic.
10. Suppose that $u \in C(U)$ satisfies
$$
\int_{U} u \Delta \varphi d x=0
$$
for all nonnegative $\varphi \in C^{2}(U)$ having compact support in U. Show that u is harmonic in U. [Hint: Use problem 9 and the standard mollifier.]
11. Evans: Section 2.5, Problem 7 (Problem 6 in 1st edition)

[^0]: ${ }^{1}$ Section 2.5, Problem 4 in 2nd edition

