Math 222A - Homework 3 (Due Sept 30)

1. (a) For $k \in \mathbb{N}$ and $\lambda>0$, consider the $(2 k)^{\text {th }}$-order linear PDE

$$
\begin{equation*}
(I-\lambda \Delta)^{k} u=f \quad \text { in } \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Use the Fourier Transform to formally derive the representation formula

$$
\begin{equation*}
u=S_{k, \lambda} * f \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{S_{k, \lambda}}(y)=\frac{1}{(2 \pi)^{n / 2}} \frac{1}{\left(1+\lambda|y|^{2}\right)^{k}} . \tag{3}
\end{equation*}
$$

(b) Show, formally, that

$$
\begin{equation*}
S_{k, \lambda}(x)=\frac{1}{(k-1)!(4 \pi \lambda)^{n / 2}} \int_{0}^{\infty} \frac{e^{-t-\frac{|x|^{2}}{4 t \lambda}}}{t^{n / 2-(k-1)}} d t \tag{4}
\end{equation*}
$$

[Hint: One way to do this is to first show that

$$
S_{k, \lambda}=\underbrace{S_{1, \lambda} * \cdots * S_{1, \lambda}}_{k \text { times }}=S_{k-1, \lambda} * S_{1, \lambda},
$$

and then use induction on k.]
(c) Fix $\sigma>0$ and set $\lambda(k)=\sigma^{2} /(2 k)$. Show that

$$
S_{k, \lambda(k)} \longrightarrow G_{\sigma} \quad \text { in } L^{2}\left(\mathbb{R}^{n}\right) \text { as } k \rightarrow \infty
$$

where

$$
G_{\sigma}(x):=\frac{1}{\left(2 \sigma^{2} \pi\right)^{n / 2}} e^{-\frac{|x|^{2}}{2 \sigma^{2}}} .
$$

It is worth thinking for a moment about the probabilistic interpretation of this limit (i.e, in the context of the central limit theorem).
2. Evans: Section 2.5, Problem 12 (Problem 10 in 1st edition)
3. Evans: Section 2.5, Problem 14 (Problem 12 in 1st edition)
4. Evans: Section 2.5, Problem 15 (Problem 13 in 1st edition)
5. Give a direct proof that if U is bounded and $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ solves the heat equation, then

$$
\max _{\bar{U}_{T}} u=\max _{\Gamma_{T}} u .
$$

[Hint: Define $u_{\varepsilon}:=u-\varepsilon t$ for $\varepsilon>0$, and show that u_{ε} cannot attain its maximum over \bar{U}_{T} at a point in U_{T}.]
6. Evans: Section 2.5, Problem 17 (Problem 14 in 1st edition)

