Math 222A - Homework 3 Solutions

1. (a) For $k \in \mathbb{N}$ and $\lambda>0$, consider the $(2 k)^{\text {th }}$-order linear PDE

$$
\begin{equation*}
(I-\lambda \Delta)^{k} u=f \quad \text { in } \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Use the Fourier Transform to formally derive the representation formula

$$
\begin{equation*}
u=S_{k, \lambda} * f \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{S_{k, \lambda}}(y)=\frac{1}{(2 \pi)^{n / 2}} \frac{1}{\left(1+\lambda|y|^{2}\right)^{k}} . \tag{3}
\end{equation*}
$$

(b) Show, formally, that

$$
\begin{equation*}
S_{k, \lambda}(x)=\frac{1}{(k-1)!(4 \pi \lambda)^{n / 2}} \int_{0}^{\infty} \frac{e^{-t-\frac{|x|^{2}}{4 t \lambda}}}{t^{n / 2-(k-1)}} d t \tag{4}
\end{equation*}
$$

[Hint: One way to do this is to first show that

$$
S_{k, \lambda}=\underbrace{S_{1, \lambda} * \cdots * S_{1, \lambda}}_{k \text { times }}=S_{k-1, \lambda} * S_{1, \lambda},
$$

and then use induction on k.]
Solution. The hint is useful to see how to derive the expression for $S_{k, \lambda}$. We can verify (4) more directly. Recall from class that

$$
\mathcal{F}\left(e^{-\sigma|x|^{2}}\right)=\frac{1}{(2 \sigma)^{n / 2}} e^{-|x|^{2} / 4 \sigma} .
$$

Let $g(x)$ denote the right hand side of (4). Then setting $\sigma=1 / 4 t \lambda$ we have

$$
\begin{aligned}
\hat{g}(y) & =\frac{1}{(k-1)!(4 \pi \lambda)^{n / 2}} \int_{0}^{\infty} \frac{e^{-t} \mathcal{F}\left(e^{-\frac{|x|^{2}}{4 t \lambda}}\right)}{t^{n / 2-(k-1)}} d t \\
& =\frac{1}{(k-1)!(2 \pi)^{n / 2}} \int_{0}^{\infty} t^{k-1} e^{-t\left(1+\lambda|y|^{2}\right)} d t
\end{aligned}
$$

Make the substitution $s=t\left(1+\lambda|y|^{2}\right)$ to obtain

$$
\hat{g}(y)=\frac{1}{(k-1)!(2 \pi)^{n / 2}} \frac{1}{\left(1+\lambda|y|^{2}\right)^{k}} \int_{0}^{\infty} s^{k-1} e^{-s} d s
$$

Since

$$
\int_{0}^{\infty} s^{k-1} e^{-s} d s=\Gamma(k)=(k-1)!
$$

we have

$$
\hat{g}(y)=\frac{1}{(2 \pi)^{n / 2}} \frac{1}{\left(1+\lambda|y|^{2}\right)^{k}}=\widehat{S_{k, \lambda}}(y) .
$$

Therefore $S_{k, \lambda}=g$.
(c) Fix $\sigma>0$ and set $\lambda(k)=\sigma^{2} /(2 k)$. Show that

$$
S_{k, \lambda(k)} \longrightarrow G_{\sigma} \quad \text { in } L^{2}\left(\mathbb{R}^{n}\right) \text { as } k \rightarrow \infty,
$$

where

$$
G_{\sigma}(x):=\frac{1}{\left(2 \sigma^{2} \pi\right)^{n / 2}} e^{-\frac{|x|^{2}}{2 \sigma^{2}}} .
$$

Solution. Let $S_{k}=S_{k, \lambda(k)}$ and notice that

$$
\widehat{S_{k}}(y)=\frac{1}{(2 \pi)^{n / 2}}\left(1+\frac{\sigma^{2}|y|^{2}}{2 k}\right)^{-k} .
$$

We suppose that $k \geq(n+1) / 4$ so that $\widehat{S_{k}} \in L^{2}\left(\mathbb{R}^{n}\right)$. Using the identity

$$
\left(1+\frac{1}{x}\right)^{x}<e<\left(1+\frac{1}{x}\right)^{x+1}
$$

with $x=2 k / \sigma^{2}|y|^{2}$ and $y \neq 0$ yields

$$
\widehat{S_{k}}(y) g_{k}(y) \leq \frac{e^{-\frac{\sigma^{2}|y|^{2}}{2}}}{(2 \pi)^{n / 2}} \leq \widehat{S_{k}}(y)
$$

where

$$
g_{k}(y)=\left(1+\frac{\sigma^{2}|y|^{2}}{2 k}\right)^{-\frac{\sigma^{2}|y|^{2}}{2}} .
$$

The inequality above obviously holds when $y=0$. Therefore

$$
\left\|\widehat{S_{k}}-\widehat{G_{\sigma}}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \leq \int_{\mathbb{R}^{n}}\left|\widehat{S_{k}}(y)\right|^{2}\left|g_{k}(y)-1\right|^{2} d y
$$

By the Dominated Convergence Theorem, the right hand side tends to 0 as $k \rightarrow \infty$. Therefore

$$
\widehat{S_{k}} \longrightarrow \widehat{G_{\sigma}} \text { in } L^{2}\left(\mathbb{R}^{n}\right) \text { as } k \rightarrow \infty .
$$

The result follows by an application of Plancherel's Theorem

$$
\left\|\widehat{S_{k}}-\widehat{G_{\sigma}}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\|S_{k}-G_{\sigma}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} .
$$

It is worth thinking for a moment about the probabilistic interpretation of this limit (i.e, in the context of the central limit theorem).
2. Evans: Section 2.5, Problem 12 (Problem 10 in 1st edition)
3. Evans: Section 2.5, Problem 14 (Problem 12 in 1st edition)

Solution. You can use Duhamel's principle or the Fourier transform method to derive the solution

$$
u(x, t)=\int_{0}^{t} \int_{\mathbb{R}^{n}} e^{-c(t-s)} \Phi(x-y, t-s) f(y, s) d y d s+\int_{\mathbb{R}^{n}} e^{-c t} \Phi(x-y, t) g(y) d y
$$

where $\Phi(x, t)=e^{-|x|^{2} / 4 t} /(4 \pi t)^{n / 2}$ is the fundamental solution of the heat equation.
4. Evans: Section 2.5, Problem 15 (Problem 13 in 1st edition)
5. Give a direct proof that if U is bounded and $u \in C_{1}^{2}\left(U_{T}\right) \cap C\left(\bar{U}_{T}\right)$ solves the heat equation, then

$$
{\underset{\bar{U}}{T}}^{\max ^{2}} u=\max _{\Gamma_{T}} u .
$$

[Hint: Define $u_{\varepsilon}:=u-\varepsilon t$ for $\varepsilon>0$, and show that u_{ε} cannot attain its maximum over \bar{U}_{T} at a point in U_{T}.]
6. Evans: Section 2.5, Problem 17 (Problem 14 in 1st edition)

