Math 222A - Homework 4 (Due Oct 7)

1. Define

$$
u(x, t):=\sum_{n=0}^{\infty} \frac{g^{(n)}(t)}{(2 n)!} x^{2 n}, \quad(x, t) \in \mathbb{R} \times[0, \infty),
$$

where

$$
g(t):= \begin{cases}e^{-\frac{1}{t^{2}}} & \text { if } t>0 \\ 0 & \text { if } t \leq 0\end{cases}
$$

Show that u is a solution of the heat equation

$$
\left\{\begin{aligned}
u_{t}-u_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\
u=0 & \text { on } \mathbb{R} \times\{t=0\}
\end{aligned}\right.
$$

2. Comparison principle: Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded. Let $u, v \in C_{1}^{2}\left(\Omega_{T}\right) \cap C\left(\overline{\Omega_{T}}\right)$ satisfy

$$
\left\{\begin{aligned}
u_{t}-\Delta u \leq f & \text { in } \Omega_{T} \\
u \leq g & \text { on } \Gamma_{T},
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
v_{t}-\Delta v \geq f & \text { in } \Omega_{T} \\
v \geq g & \text { on } \Gamma_{T} .
\end{aligned}\right.
$$

Show that $u \leq v$ on $\overline{\Omega_{T}}$. [Remark: We call u a subsolution, and v a supersolution of the heat equation.]
3. Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded. Let $u \in C_{1}^{2}(\Omega \times(0, \infty)) \cap C(\bar{\Omega} \times[0, \infty))$ be a solution of the heat equation

$$
\left\{\begin{aligned}
u_{t}-\Delta u=f & \text { in } \Omega \times(0, \infty) \\
u=0 & \text { on } \Omega \times\{t=0\} \\
u=0 & \text { on } \partial \Omega \times\{t>0\},
\end{aligned}\right.
$$

and let $u_{\infty} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a solution of

$$
\left\{\begin{aligned}
-\Delta u_{\infty}=f & \text { in } \Omega \\
u_{\infty}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Show that

$$
\lim _{t \rightarrow \infty} u(x, t)=u_{\infty}(x) \quad \text { uniformly in } x
$$

[Hint: Use the comparison principle to compare u against super and subsolutions of the form

$$
v(x, t)=u_{\infty}(x) \pm \varphi(x, t),
$$

where $\lim _{t \rightarrow \infty} \varphi(x, t)=0$ uniformly in x.]
4. Evans: Section 2.5, Problem 19 (Problem 15 in 1st Edition)
5. Evans: Section 2.5, Problem 24 (Problem 17 in 1st Edition)

