Math 222A - Homework 4 Solutions

1. Define

$$
u(x, t):=\sum_{n=0}^{\infty} \frac{g^{(n)}(t)}{(2 n)!} x^{2 n}, \quad(x, t) \in \mathbb{R} \times[0, \infty)
$$

where

$$
g(t):= \begin{cases}e^{-\frac{1}{t^{2}}} & \text { if } t>0 \\ 0 & \text { if } t \leq 0\end{cases}
$$

Show that u is a solution of the heat equation

$$
\left\{\begin{aligned}
u_{t}-u_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\
u=0 & \text { on } \mathbb{R} \times\{t=0\} .
\end{aligned}\right.
$$

2. Comparison principle: Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded. Let $u, v \in C_{1}^{2}\left(\Omega_{T}\right) \cap C\left(\overline{\Omega_{T}}\right)$ satisfy

$$
\left\{\begin{aligned}
u_{t}-\Delta u \leq f & \text { in } \Omega_{T} \\
u \leq g & \text { on } \Gamma_{T},
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
v_{t}-\Delta v \geq f & \text { in } \Omega_{T} \\
u \geq g & \text { on } \Gamma_{T} .
\end{aligned}\right.
$$

Show that $u \leq v$ on $\overline{\Omega_{T}}$. [Remark: We call u a subsolution, and v a supersolution of the heat equation.]
3. Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded. Let $u \in C_{1}^{2}(\Omega \times(0, \infty)) \cap C(\bar{\Omega} \times[0, \infty))$ be a solution of the heat equation

$$
\left\{\begin{aligned}
u_{t}-\Delta u=f & \text { in } \Omega \times(0, \infty) \\
u=0 & \text { on } \Omega \times\{t=0\} \\
u=0 & \text { on } \partial \Omega \times\{t>0\},
\end{aligned}\right.
$$

and let $u_{\infty} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a solution of

$$
\left\{\begin{aligned}
-\Delta u_{\infty}=f & \text { in } \Omega \\
u_{\infty}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Show that

$$
\lim _{t \rightarrow \infty} u(x, t)=u_{\infty}(x) \quad \text { uniformly in } x .
$$

[Hint: Use the comparison principle to compare u against super and subsolutions of the form

$$
v(x, t)=u_{\infty}(x) \pm \varphi(x, t),
$$

where $\lim _{t \rightarrow \infty} \varphi(x, t)=0$ uniformly in x.]

Solution. Since Ω is bounded, there exists $R>0$ such that $\Omega \subseteq B(0, R-1)$. Let ξ be a smooth cutoff function satisfying $\xi \equiv 1$ in $B(0, R-1), \xi \equiv 0$ in $\mathbb{R}^{n} \backslash B(0, R)$ and $0 \leq \xi \leq 1$. Define

$$
\varphi(x, t)=\int_{\mathbb{R}^{n}} \Phi(x-y, t) \xi(y) d y
$$

where Φ is the fundamental solution of the heat equation. Then φ satisfies the heat equation $u_{t}-\Delta u=0$ in $\mathbb{R}^{n}, \varphi \geq 0$ on \mathbb{R}^{n}, and $\varphi(x, 0) \equiv 1$ in Ω. Furthermore, we have

$$
|\varphi(x, t)|=\frac{1}{(4 \pi t)^{n / 2}} \int_{B(0, R)} e^{-|x-y|^{2} / 4 t} \xi(y) d y \leq \frac{\alpha(n) R^{n}}{(4 \pi t)^{n / 2}}
$$

for all $t>0$ and $x \in \mathbb{R}^{n}$. Therefore

$$
\lim _{t \rightarrow \infty} \varphi(x, t)=0 \quad \text { uniformly in } x
$$

Let $C:=\left\|u_{\infty}\right\|_{L^{\infty}(\Omega)}$ and set $v(x, t):=u_{\infty}(x)+C \varphi(x, t)$. Then v is a solution of the heat equation $v_{t}-\Delta v=f$ on $\Omega \times(0, \infty)$ that satisfies

$$
v(x, t)=u_{\infty}(x)+C \varphi(x, t) \geq 0 \quad \text { for } x \in \partial \Omega,
$$

and

$$
v(x, 0)=u_{\infty}(x)+C \geq 0 \quad \text { for } x \in \Omega .
$$

By the comparison principle, $u \leq u_{\infty}+C \varphi$ on $\Omega \times(0, \infty)$. A similar argument shows that $u \geq u_{\infty}-C \varphi$. Therefore

$$
\left|u-u_{\infty}\right| \leq C \varphi \quad \text { on } \Omega \times(0, \infty) .
$$

It follows that $\lim _{t \rightarrow \infty} u(x, t)=u_{\infty}(x)$ uniformly in x. Furthermore, we have the decay estimate

$$
\left\|u(\cdot, t)-u_{\infty}(\cdot)\right\|_{L^{\infty}(\Omega)} \leq \frac{C}{t^{n / 2}} .
$$

4. Evans: Section 2.5, Problem 19 (Problem 15 in 1st Edition)
5. Evans: Section 2.5, Problem 24 (Problem 17 in 1st Edition)
