MATH 222A – HOMEWORK 5 (DUE OCT 23)

1. Consider the static Hamilton-Jacobi equation

(H)
$$\begin{cases} u_{x_1}u_{x_2} = 1 & \text{in } U \\ u = 0 & \text{on } \Gamma := \partial U, \end{cases}$$

where

$$U = \left\{ x \in (0, \infty)^2 : x_1 > 1 \text{ or } x_2 > 1 \right\}.$$

Let A = (0, 1), B = (1, 1) and C = (1, 0).

- (a) Show that there are no admissible triples (p^0, z^0, x^0) with $x^0 \in \Gamma \setminus \{A, B, C\}$.
- (b) For each $x^0 \in \{A, B, C\}$, find all admissible triples (p^0, z^0, x^0) . At nonsmooth boundary points $x^0 \in \{A, B, C\}$, we call a triple (p^0, z^0, x^0) admissible if

$$p_1^0 p_2^0 = 1$$
 and $z^0 = u(x^0)$.

- (c) For each $x^0 \in \{A, B, C\}$ and each admissible triple from part (b), solve the characteristic equations for (H).
- (d) For each $x \in U$, find all possible values of u(x) by tracing characteristics back from x to Γ . This gives a "multi-valued solution" of (H). Which points $x \in U$ lie on exactly one characteristic curve? Which lie on exactly two characteristic curves? Which lie three?
- (e) Choose a single value for u(x) at each x so that u is continuous on \overline{U} and differentiable almost everywhere in U. Write down your solution in closed form and check that it solves (H) at all points of differentiability. Sketch the characteristics for your solution.
- 2. Solve using method of characteristics
 - (a) $x_1u_{x_1} + x_2u_{x_2} = 2u$, $u(x_1, 1) = g(x_1)$.
 - (b) $uu_{x_1} + u_{x_2} = 1$, $u(x_1, x_1) = \frac{1}{2}x_1$.
- 3. Let $u, v \in C^1(U_T) \cap C(\overline{U_T})$ satisfy

$$\begin{cases} u_t + H(Du, x) \le 0 & \text{in } U_T \\ u \le g & \text{on } \Gamma_T, \end{cases}$$

and

$$\begin{cases} v_t + H(Dv, x) \ge 0 & \text{in } U_T \\ v \ge g & \text{on } \Gamma_T \end{cases}$$

Show that $u \leq v$ on $\overline{U_T}$. Conclude that there is at most one solution $u \in C^1(U_T) \cap C(\overline{U_T})$ of the Hamilton-Jacobi equation

$$\begin{cases} u_t + H(Du, x) = 0 & \text{in } U_T \\ u = g & \text{on } \Gamma_T \end{cases}$$

[Hint: Let $\varepsilon > 0$ and set $w(x,t) = u(x,t) - v(x,t) - \varepsilon t$. Show that w attains its maximum on the boundary Γ_T .]

- 4. Evans: Section 3.5, Problem 10 (Problem 5 in 1st edition)
- 5. Evans: Section 3.5, Problem 11 (Problem 6 in 1st edition)
- 6. Evans: Section 3.5, Problem 13 (Problem 7 in 1st edition)
- 7. Evans: Section 3.5, Problem 14 (Problem 8 in 1st edition)
- 8. Evans: Section 3.5, Problem 19 (Problem 13 in 1st edition)
- 9. Evans: Section 3.5, Problem 20 (Problem 14 in 1st edition)