MATH 222A - HOMEWORK 6 (DUE NOV 4)

- 1. Show that the condition $v \in C_c^{\infty}(\mathbb{R} \times [0, \infty))$ can be replaced by $v \in C_c^1(\mathbb{R} \times [0, \infty))$ in the definition of integral solution of scalar conservation laws.
- 2. Let $g \in L^{\infty}(\mathbb{R})$ be compactly supported, T > 0, and let u be the entropy solution of the scalar conservation law

(S)
$$\begin{cases} u_t + F(u)_x = 0 & \text{in } \mathbb{R} \times (0, T] \\ u = g & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}$$

where F is smooth and uniformly convex. Let $\varepsilon > 0$, set $M = \varepsilon^{-1}$, and suppose $u^{\varepsilon} \in C^{\infty}([-M, M] \times [0, T])$ is a solution of the viscous conservation law

$$(\mathbf{S}_{\varepsilon}) \begin{cases} u_t^{\varepsilon} + F(u^{\varepsilon})_x - \varepsilon u_{xx}^{\varepsilon} = 0 & \text{in } (-M, M) \times (0, T] \\ u_x^{\varepsilon} = 0 & \text{on } \{\pm M\} \times (0, T] \\ u^{\varepsilon} = g^{\varepsilon} & \text{on } [-M, M] \times \{t = 0\}, \end{cases}$$

where $g^{\varepsilon} = \eta^{\varepsilon} * g$, and η^{ε} is the standard mollifier.

(a) Show that

$$\|u^{\varepsilon}\|_{L^{\infty}([-M,M]\times[0,T])} \le \|g\|_{L^{\infty}(\mathbb{R})}.$$
(1)

[Hint: Use a maximum principle argument.]

(b) Since F is uniformly convex, there exists $\theta > 0$ such that $F'' \ge \theta$. Show that

$$u_x^{\varepsilon}(x,t) \le \frac{1}{\theta t}$$
 for all $(x,t) \in [-M,M] \times (0,T].$ (2)

Explain, briefly, why you *cannot* similarly bound the absolute value $|u_x^{\varepsilon}|$. [Hint: Set $a(x,t) = u_x^{\varepsilon}(x,t)$ and differentiate (S_{ε}) to find a PDE satisfied by a. Show that $v(x,t) = \frac{1}{\theta t}$ is a supersolution of this PDE and use a comparison principle argument similar to HW #5, Problem 3 to establish (2).]

- (c) Suppose that the limit $\lim_{\varepsilon \to 0^+} u^{\varepsilon}(x,t)$ exists for almost every $(x,t) \in \mathbb{R} \times [0,T]$. Show that $u^{\varepsilon} \to u$ pointwise almost everywhere as $\varepsilon \to 0$. [Actually, we need not assume the limit exists. It is an interesting exercise to use the Banach-Alaoglu Theorem to show that u^{ε} converges to u in the weak* topology on L^{∞} .]
- 3. Evans: Section 3.5, Problem 17 (Problem 11 in 1st edition)
- 4. Evans: Section 4.7, Problem 1
- 5. Evans: Section 4.7, Problem 2
- 6. Find a nonnegative scaling invariant solution having the form

$$u(x,t) = t^{-\alpha}v(xt^{-\beta})$$

of the nonlinear heat equation

$$u_t - \Delta(u^\gamma) = 0$$

where $\frac{n-2}{n} < \gamma < 1$. Your solution should go to zero algebraically as $|x| \to \infty$.

7. Find a solution of

$$-\Delta u + u^{\frac{n+2}{n-2}} = 0$$
 in $B(0,1)$

having the form $u = \alpha (1 - |x|^2)^{-\beta}$ for positive constants α and β . This example shows that a solution of a nonlinear PDE can be finite within a region and yet approach infinity everywhere on its boundary.