MATH 222A – HOMEWORK 8 (DUE MONDAY NOVEMBER 23)

- 1. Verify that if n > 1, the unbounded function $u = \log \log(1 + \frac{1}{|x|})$ belongs to $W^{1,n}(U)$, for U = B(0, 1).
- 2. (Chain rule) Assume $F : \mathbb{R} \to \mathbb{R}$ is C^1 , with F' bounded. Suppose U is bounded and $u \in W^{1,p}(U)$ for some $1 \le p \le \infty$. Show that

$$v := F(u) \in W^{1,p}(U)$$
 and $v_{x_i} = F'(u)u_{x_i}$ $(i = 1, ..., n).$

- 3. Assume $1 \le p \le \infty$ and U is bounded.
 - (a) Prove that if $u \in W^{1,p}(U)$ then $|u| \in W^{1,p}(U)$.
 - (b) Prove that $u \in W^{1,p}(U)$ implies $u^+, u^- \in W^{1,p}(U)$, and

$$Du^{+} = \begin{cases} Du & \text{a.e. on } \{u > 0\} \\ 0 & \text{a.e. on } \{u \le 0\}, \end{cases}$$

$$Du^{-} = \begin{cases} 0 & \text{a.e. on } \{u \ge 0\} \\ -Du & \text{a.e. on } \{u < 0\}. \end{cases}$$

Here, $u^+ = \max(0, u)$ and $u^- = -\min(0, u)$, so that $u = u^+ - u^-$. [Hint: $u^+ = \lim_{\varepsilon \to 0} F_{\varepsilon}(u)$, for

$$F_{\varepsilon}(z) = \begin{cases} (z^2 + \varepsilon^2)^{1/2} - \varepsilon & \text{if } z \ge 0\\ 0 & \text{if } z < 0. \end{cases}$$

(c) Prove that if $u \in W^{1,p}(U)$, then

$$Du = 0$$
 a.e. on the set $\{u = 0\}$.