Math 5467 - Final Exam (Due Wednesday May 11 by Midnight)

Instructions:

- Complete the problems below, and submit your solutions by uploading them to the Google form https://forms.gle/4t18ZzSMSqDhVt8E7.
- You must submit your exam by Wednesday May 11 @ midnight Central time zone.
- LaTeX is preferred, but you may also scan and upload legible handwritten solutions (with a good scanning app).

Problems:

1. Let a be a real number, with $|a| \neq 1$, and define $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ by $f(k)=a^{k}$. Show that

$$
\mathcal{D} f(\ell)=\frac{a^{n}-1}{a e^{-2 \pi i \ell / n}-1}
$$

Hint: Write the sum defining the $\operatorname{DFT} \mathcal{D} f(\ell)$ as a geometric series and use the formula

$$
\sum_{k=0}^{n-1} r^{k}=\frac{r^{n}-1}{r-1}
$$

2. Assume f is convex, and let $x(t)$ satisfy the gradient descent ODE

$$
x^{\prime}(t)=-\nabla f(x(t))
$$

with $x(0)=x_{0}$. Show that

$$
f(x(t))-f\left(x_{*}\right) \leq \frac{\left\|x_{0}-x_{*}\right\|^{2}}{2 t}
$$

where $x_{*} \in \mathbb{R}^{n}$ is any minimizer of f. Hint: Define the energy

$$
e(t)=t\left(f(x(t))-f\left(x_{*}\right)\right)+\frac{1}{2}\left\|x(t)-x_{*}\right\|^{2}
$$

and show that $e^{\prime}(t) \leq 0$ so that $e(t) \leq e(0)$. You will find the inequality below useful, which holds for convex functions f :

$$
\begin{equation*}
f(x(t))-f\left(x_{*}\right) \leq \nabla f(x(t))^{T}\left(x(t)-x_{*}\right) \tag{1}
\end{equation*}
$$

3. Consider the version of Nesterov's accelerated gradient descent in the form

$$
\left\{\begin{array}{l}
y_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right) \tag{2}\\
x_{k+1}=y_{k+1}+\frac{k-2}{k+1}\left(y_{k+1}-y_{k}\right)
\end{array}\right.
$$

(i) Show that Nesterov's accelerated gradient descent given in (2) satisfies

$$
\frac{x_{k+1}-2 x_{k}+x_{k-1}}{\alpha}+a_{k} \frac{x_{k}-x_{k-1}}{\sqrt{\alpha}}=-\nabla f\left(x_{k}\right)+\frac{k-2}{k+1}\left(\nabla f\left(x_{k-1}\right)-\nabla f\left(x_{k}\right)\right),
$$

where $a_{k}=\frac{3}{\sqrt{\alpha}(k+1)}$.
(ii) Assume $x_{k}=x(\sqrt{\alpha} k)$ is the discretization of a smooth curve $x(t)$ for $t \geq 0$. Explain why it follows from part (i) that when we send $\alpha \rightarrow 0$ we obtain that x solves the ordinary differential equation (ODE)

$$
\begin{equation*}
x^{\prime \prime}(t)+\frac{3}{t} x^{\prime}(t)=-\nabla f(x(t)) . \tag{3}
\end{equation*}
$$

This ODE is sometimes called continuous time Nesterov. From the continuum point of view, we can see that Nesterov's method is simlar to the heavy ball method with time-dependent friction $a(t)=\frac{3}{t}$. The friction starts off very large, but vanishes as $t \rightarrow \infty$, which allows for accelerated convergence for non-strongly convex functions that may be extremely flat near their minima.
(iii) Assume f is convex and let $x(t)$ satisfy (3) with $x(0)=x_{0}$ and $x^{\prime}(0)=0$. Show that

$$
f(x(t))-f\left(x_{*}\right) \leq \frac{2\left\|x_{0}-x_{*}\right\|^{2}}{t^{2}}
$$

where $x_{*} \in \mathbb{R}^{n}$ is any minimizer of f. Hint: Define the energy functional

$$
e(t)=t^{2}\left(f(x(t))-f\left(x_{*}\right)\right)+2\left\|x(t)+\frac{t}{2} x^{\prime}(t)-x_{*}\right\|^{2} .
$$

Then show that
$e^{\prime}(t)=2 t\left(f(x(t))-f\left(x_{*}\right)\right)+t^{2} \nabla f(x(t))^{T} x^{\prime}(t)+2 t\left(x(t)+\frac{t}{2} x^{\prime}(t)-x_{*}\right)^{T}\left(x^{\prime \prime}(t)+\frac{3}{t} x^{\prime}(t)\right)$.
Apply the inequality (1) to the first term, and use the Nesterov ODE (3) in the last term. After simplifying you should get that $e^{\prime}(t) \leq 0$ for all $t \geq 0$, so that $e(t) \leq e(0)$, from which the result follows.

