
Math 5467 – Homework 1 Solutions

Problems:

1. Register for the Piazza site https://piazza.com/umn/spring2022/math5467 and make a
post to the whole class. Tell us something about yourself (e.g., is there something new you
learned to do during the pandemic), and let us know if there is something specific you would
like to learn in the course.

2. Write a Python function that computes the square root of a positive number using the Baby-
lonian method. The Babylonian method to compute

√
S for S > 0 constructs the sequence

xn by setting x0 = S and iterating

xn+1 =
1

2

(
xn +

S

xn

)
.

Your code can take as input a tolerance parameter ε > 0, and should iterate until |x2n−S| ≤ ε,
and then return xn. Test your square root function to make sure it works.

Your function should use only basic Python programming. In particular, do not use any pack-
ages, like Numpy, Scipy, etc.

Solution is in the Python notebook from class: Google Colab Notebook.

3. Prove that the iteration in the Babylonian method above converges quadratically to the square
root of S. In particular, show that the error εn = xn√

S
− 1 satisfies

εn+1 =
ε2n

2(εn + 1)
.

From this, we get that εn ≥ 0 for n ≥ 1, and so

εn+1 ≤
1

2
min{ε2n, εn}.

Show that this implies that εn < 1 and εn+1 ≤ ε2n for n sufficiently large, which is exactly
quadratic convergence.

Proof. We will start by showing that the error εn = xn√
x
− 1 satisfies

εn+1 =
ε2n

2(εn + 1)
.

Let n ≥ 0. Then,

εn+1 =
xn+1√
x
− 1 =

xn + x
xn

2
√
x
− 1 =

1

2

x2
n
x + 1− 2xn√

x
xn√
x

=

x2
n
x + 1− 2xn√

x

2(εn + 1)
=

ε2n
2(εn + 1)

.

Using this equation and the fact that ε1 =
ε20

2
√
x
≥ 0, we have that εn ≥ 0 for n ≥ 1. Since

εn ≥ 0 for n ≥ 1, we have that for n ≥ 1,

εn+1 =
ε2n

2(εn + 1)
≤ ε2n + εn

2(εn + 1)
=
εn
2
.
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Likewise, it also follows that εn+1 ≤ ε2n
2 . Therefore, εn ≤ 1

2 min{εn, ε2n}. Since, εn+1 is smaller
than the minimum of both values, it must be smaller than ε2n

2 and ε
2 . Therefore, for n ≥ 1,

εn ≤ ε1
2n−1 which is to say that εn converges to 0. Therefore, for sufficiently large n, εn < 1.

Furthermore, since εn+1 ≤ ε2n
2 ,we have that εn+1 ≤ ε2n for n ≥ 1 which is to say that for

sufficiently large n, εn < 1 and εn+1 ≤ ε2n. Thus, the series converges quadratically.

4. Write a Python function that computes the largest magnitude eigenvalue of a square matrix
with the power iteration. The power iteration is

xn+1 =
Axn
‖Axn‖

.

For a diagonalizable matrix, the iteration converges to the eigenvector of A with largest
magnitude eigenvalue. The eigenvalue is

λ = lim
n→∞

xTnAxn.

Compare your function to the true eigenvector and eigenvalue for small matrices where you
can compute it by hand, to check that your function works. You can either run your power
iteration for a fixed (and large) number of iterations, or you can compute the residual vector

rn = Axn − (xTnAxn)xn

and run the iterations until ‖rn‖ ≤ ε, where ε > 0 is a given tolerance parameter (which can
be an argument to your function).

In this exercise you may use Numpy. Try to write your code with only one loop, over the
iterations in the power method.

Solution is in the python notebook from class: Google Colab Notebook.

5. Let A be a symmetric matrix. Show that any minimizer x of

min{xTAx : ‖x‖ = 1} (1)

is an eigenvector of A with eigenvalue λ = xTAx, without using that A is diagonalizable.
[Hint: Any minimizer of (1) is also a minimizer of the Rayleigh quotient

f(x) =
xTAx

xTx

over x ∈ Rn. Compute ∇f(x), set ∇f(x) = 0, and use that ‖x‖ = 1.]

Proof. First of all, we compute ∇f(x). We have the following

∇f(x) = xTx∇(xTAx)− xTAx∇(xTx)
(xTx)2

= xTx(A+AT )x− (xTAx) · 2x
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where in the second equality the denominator disappears because we have ‖x‖ = 1 and
∇(xTAx) = (A + AT )x was given in class. Now that we computed ∇f(x) we must set
∇f(x) = 0 and derive the following

xTx(A+AT )x− 2(xTAx)x = 0

⇒ xTx(A+AT )x = 2(xTAx)x

⇒ 1(A+AT )x = 2(xTAx)x (Remember ‖x‖ = 1)

⇒ (A+A)x = 2(xTAx)x (A = AT since A is symmetric)

⇒ 2Ax = 2(xTAx)x

⇒ Ax = (xTAx)x

which shows us that indeed x is an eigenvector of A and furthermore the corresponding
eigenvalue is xTAx as desired.

6. Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and let a1, . . . , an satisfy 0 ≤ ai ≤ 1 for all i, and
n∑

i=1

ai = k,

where k is an integer and 1 ≤ k ≤ n. Show that

n∑
i=1

λiai ≤
k∑

i=1

λi.

Proof. We observe the following:
n∑

i=1

λiai = λ1a1 + λ2a2 + · · ·+ λnan (by definition of summation)

≤ λ1a1 + λ2a2 + · · ·+ λkak + λkak+1 + · · ·+ λkan (since λk+i ≤ λk for all i)
= λ1a1 + λ2a2 + · · ·+ λk−1ak−1 + λk (ak + ak+1 + · · ·+ an)

= λ1a1 + λ2a2 + · · ·+ λk−1ak−1 + λk (k − a1 − a2 − · · · − ak−1) (since
n∑

i=1

ai = k)

= (λ1 − λk)a1 + (λ2 − λk)a2 + · · ·+ (λk−1 − λk)ak−1 + λkk

≤ (λ1 − λk) + (λ2 − λk) + · · ·+ (λk−1 − λk) + λkk (since 0 ≤ ai ≤ 1 for all i
and λi − λk ≥ 0 for all i ≥ k)

= λ1 + λ2 + · · ·+ λk−1 + λk(k − (k − 1)) (since there are k − 1 times λk
appears before λkk)

= λ1 + λ2 + · · ·+ λk

=

k∑
i=1

λk.

This is the desired result that
∑n

i=1 λiai ≤
∑k

i=1 λi.
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