Math 5467 - Homework 3

Instructions:

- Complete the problems below, and submit your solutions by uploading them to your shared Google form for HW3.
- If you use LaTeX to write up your solutions, upload them as a pdf file. Students who use LaTeX to write up their solutions will receive bonus points on the homework assignment.
- If you choose to write your solutions and scan them, please either use a real scanner, or use a smartphone app that allows scanning with you smartphone camera. It is not acceptable to submit images of your solutions, as these can be hard to read.

Problems:

1. (Split-Radix FFT) Assume $n \geq 4$ is a power of 2 and let $f \in L^{2}\left(\mathbb{Z}_{n}\right)$. Define $f_{e} \in L^{2}\left(\mathbb{Z}_{\frac{n}{2}}\right)$, and $f_{o, 1}, f_{o, 2} \in L^{2}\left(\mathbb{Z}_{\frac{n}{4}}\right)$ by

$$
f_{e}(k)=f(2 k), \quad f_{o, 1}(k)=f(4 k+1), \quad \text { and } \quad f_{o, 2}(k)=f(4 k+3) .
$$

(i) Show that

$$
\begin{equation*}
\mathcal{D}_{n} f(\ell)=\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell) . \tag{1}
\end{equation*}
$$

(ii) The FFT algorithm based on the 3 -way split in (1) is called the split-radix FFT algorithm. There are a lot of redundant computations in (1), and these must be accounted for in order to realize the improved complexity of the split-radix FFT. Show that

$$
\begin{aligned}
\mathcal{D}_{n} f(\ell) & =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right), \\
\mathcal{D}_{n} f\left(\ell+\frac{n}{2}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)-\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right), \\
\mathcal{D}_{n} f\left(\ell+\frac{n}{4}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)-i\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right), \\
\mathcal{D}_{n} f\left(\ell+\frac{3 n}{4}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)+i\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right),
\end{aligned}
$$

for $0 \leq \ell \leq \frac{n}{4}-1$. This gives all the outputs of $\mathcal{D} f(\ell)$ and reduces the number of multiplications and additions required.
(iii) Explain how the observations in Part (ii) allow you to compute $\mathcal{D}_{n} f$ from $\mathcal{D}_{\frac{n}{2}} f_{e}$, $\mathcal{D}_{\frac{n}{4}} f_{o, 1}$ and $\mathcal{D}_{\frac{n}{4}} f_{o, 2}$ using $6 n$ real operations. [Note, multiplications with ± 1 or $\pm i$ do not count, since they amount to negation of real or imaginary parts, which can be absorbed into the next operation by changing it from addition to subtraction or vice versa]
(iv) Show that part (iii) implies that the number of real operations taken by the splitradix FFT, denoted again as A_{n}, satisfies the recursion

$$
A_{n}=A_{\frac{n}{2}}+2 A_{\frac{n}{4}}+6 n .
$$

Explain why $A_{1}=0$ and $A_{2}=4$. Use this to show that $A_{n} \leq 4 n \log _{2} n$. [Hint: Define $B_{n}=A_{n}-4 n \log _{2} n$ and show that B_{n} satisfies

$$
B_{n}=B_{\frac{n}{2}}+2 B_{\frac{n}{4}}
$$

with $B_{1}=0$ and $B_{2}=-4$. Use this to argue that $B_{n} \leq 0$ for all power-of-two n.] [Note: If one is more careful about redundant computations (there are additional multiplications with ± 1 or $\pm i$ that can be skipped), then the complexity of the split-radix FFT algorithm is actually $4 n \log _{2} n-6 n+8$ real operations].
2. Discrete derivatives (difference quotients) can be interpreted as convolutions. Complete the following exercises.
(i) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the backward difference

$$
\nabla^{-} f(k)=f(k)-f(k-1) .
$$

Find $g \in L^{2}\left(\mathbb{Z}_{n}\right)$ so that $\nabla^{-} f=g * f$ and use the DFT convolution property $\mathcal{D}(g * f)=\mathcal{D} g \mathcal{D} f$ to show that $\mathcal{D}\left(\nabla^{-} f\right)(k)=\left(1-\omega^{-k}\right) \mathcal{D} f(k)$, where $\omega=e^{2 \pi i / n}$.
(ii) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the forward difference

$$
\nabla^{+} f(k)=f(k+1)-f(k) .
$$

Find $g \in L^{2}\left(\mathbb{Z}_{n}\right)$ so that $\nabla^{+} f=g * f$ use this to show that $\mathcal{D}\left(\nabla^{+} f\right)(k)=\left(\omega^{k}-\right.$ 1) $\mathcal{D} f(k)$.
(iii) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the centered difference by

$$
\nabla f(k)=\frac{1}{2}\left(\nabla^{-} f(k)+\nabla^{+} f(k)\right)=\frac{1}{2}(f(k+1)-f(k-1)) .
$$

Use parts (i) and (ii) to show that

$$
\mathcal{D}(\nabla f)(k)=\frac{1}{2}\left(\omega^{k}-\omega^{-k}\right) \mathcal{D} f(k)=i \sin (2 \pi k / n) \mathcal{D} f(k) .
$$

(iv) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$, define the discrete Laplacian as

$$
\Delta f(k)=\nabla^{+} \nabla^{-} f(k)=f(k+1)-2 f(k)+f(k-1)
$$

Use parts (i) and (ii) to show that

$$
\mathcal{D}(\Delta f)(k)=\left(\omega^{k}+\omega^{-k}-2\right) \mathcal{D} f(k)=2(\cos (2 \pi k / n)-1) \mathcal{D} f(k) .
$$

3. Consider the Poisson equation

$$
\begin{equation*}
\Delta u=f \quad \text { on } \mathbb{Z}_{n} . \tag{2}
\end{equation*}
$$

The source term $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ is given, and $u \in L^{2}\left(\mathbb{Z}_{n}\right)$ is the unknown we wish to solve for. The discrete Laplacian Δ is defined in Problem 2. Use the DFT and the results from Problem 2 to derive a solution formula for u using one forward transform \mathcal{D} and one inverse transform \mathcal{D}^{-1}. Is there a condition you need to place on $\mathcal{D} f$ for your solution formula to make sense? [Hint: Take the DFT of both sides of (2), solve for $\mathcal{D} u$, and then apply the inverse $\operatorname{DFT} \mathcal{D}^{-1}$. Be careful not to divide by zero when you solve for $\mathcal{D} u$.]
4. Let $n \geq 1$ be odd. Show that for $t \notin \mathbb{Z}$ we have

$$
\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2 \pi i k t}=\frac{\operatorname{sinc}(n t)}{\operatorname{sinc}(t)}
$$

What happens when $t \in \mathbb{Z}$? Here, sinc is the normalized sinc function $\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}$.

