
Math 5467 – Homework 3 Solutions

1. (Split-Radix FFT) Assume n ≥ 4 is a power of 2 and let f ∈ L2(Zn). Define fe ∈ L2(Zn
2
),

and fo,1, fo,2 ∈ L2(Zn
4
) by

fe(k) = f(2k), fo,1(k) = f(4k + 1), and fo,2(k) = f(4k + 3).

(i) Show that

Dnf(`) = Dn
2
fe(`) + e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`). (1)

Proof by Michael Markiewicz. By definition of the discrete Fourier transform, we
have

Dnf(`) =
n−1∑
k=0

f(k)e−2πik`/n

=

n
2
−1∑

k=0

f(2k)e−2πi(2k)`/n +

n
2
−1∑

k=0

f(2k + 1)e−2πi(2k+1)`/n

=

n
2
−1∑

k=0

f(2k)e−2πik`/n
2 + e−2πi`/n

n
2
−1∑

k=0

f(2k + 1)e−2πik`/n
2

= Dn
2
fe(`) + e−2πi`/n

n
4
−1∑

k=0

f(4k + 1)e−2πi(2k)`/n
2 +

n
4
−1∑

k=0

f(4k + 3)e−2πi(2k+1)`/n
2


= Dn

2
fe(`) + e−2πi`/n

n
4
−1∑

k=0

f(4k + 1)e−2πik`/n
4 + e−2πi`/n

2

n
4
−1∑

k=0

f(4k + 3)e−2πik`/n
4


= Dn

2
fe(`) + e−2πi`/nDn

4
fo,1(`) + e(−2πi`)(1/n+2/n)Dn

4
fo,2(`)

= Dn
2
fe(`) + e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)

as desired.

(ii) The FFT algorithm based on the 3-way split in (1) is called the split-radix FFT
algorithm. There are a lot of redundant computations in (1), and these must be
accounted for in order to realize the improved complexity of the split-radix FFT.
Show that

Dnf(`) = Dn
2
fe(`) + (e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)),

Dnf(`+ n
2 ) = Dn

2
fe(`)− (e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)),

Dnf(`+ n
4 ) = Dn

2
fe(`+ n

4 )− i(e−2πi`/nDn
4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)),

Dnf(`+ 3n
4 ) = Dn

2
fe(`+ n

4 ) + i(e−2πi`/nDn
4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)),

for 0 ≤ ` ≤ n
4 − 1. This gives all the outputs of Df(`) and reduces the number of

multiplications and additions required.



Proof by Michael Markiewicz. The first of the four equations comes from what we
have shown in part (i):

Dnf(`) = Dn
2
fe(`) +

(
e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)

)
.

To show the next three equations, we first observe the following for m ∈ Z:

e−2πi(`+mn
4
)/nDn

4
fo,1((`+m

n

4
)) + e−2πi3(`+mn

4
)/nDn

4
fo,2((`+m

n

4
))

= e−2πi(`+mn
4
)/nDn

4
fo,1(`) + e−2πi3(`+mn

4
)/nDn

4
fo,2(`)

(since Dn
4
fo,1,Dn

4
fo,2 ∈ l(Zn

4
), i.e., n/4 periodic.)

= e−2πi`/ne−2πimn
4
/nDn

4
fo,1(`) + e−2πi3`/ne−2πi3mn

4
/nDn

4
fo,2(`)

= e−2πi`/n
(

cos(−πm
2

) + i sin(−πm
2

)
)
Dn

4
fo,1(`)

+ e−2πi3`/n
(

cos(−3π
m

2
) + i sin(−3π

m

2
)
)
Dn

4
fo,2(`)

= e−2πi`/n
(

cos(π
m

2
)− i sin(π

m

2
)
)
Dn

4
fo,1(`)

+ e−2πi3`/n
(

cos(3π
m

2
)− i sin(3π

m

2
)
)
Dn

4
fo,2(`)

(since cosine is even and sine is odd).

Then for m = 1, we have

e−2πi(`+n
4
)/nDn

4
fo,1((`+

n

4
)) + e−2πi3(`+n

4
)/nDn

4
fo,2((`+

n

4
))

= − i
[
e−2πi`/nDn

4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)

]
,

and for m = 2, we have

e−2πi(`+n
2
)/nDn

4
fo,1((`+

n

2
)) + e−2πi3(`+n

2
)/nDn

4
fo,2((`+

n

2
))

= −
[
e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)

]
,

and finally for m = 3, we have

e−2πi(`+3n
4
)/nDn

4
fo,1((`+ 3

n

4
)) + e−2πi3(`+3n

4
)/nDn

4
fo,2((`+ 3

n

4
))

= i
[
e−2πi`/nDn

4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)

]
.

We also know that Dn
2
fe ∈ L2(Zn

2
) by definition, so

Dn
2
fe(`+

n

2
) = Dn

2
fe(`),

Dn
2
fe(`+

3n

4
) = Dn

2
fe(`+

n

4
)

since it is periodic with period n
2 .

2



Using the equalities shown above, it is a direct consequence that the three equations
hold:

Dnf(`+
n

2
) = Dn

2
fe(`+

n

2
) +

(
e−2πi(`+n

2
)/nDn

4
fo,1(`+

n

2
) + e−2πi3(`+n

2
)/nDn

4
fo,2(`+

n

2
)
)

= Dn
2
fe(`)− (e−2πi`/nDn

4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`)).

Dnf(`+
n

4
) = Dn

2
fe(`+

n

4
) +

(
e−2πi(`+n

4
)/nDn

4
fo,1(`+

n

4
) + e−2πi3(`+n

4
)/nDn

4
fo,2(`+

n

4
)
)

= Dn
2
fe(`+ n

4 )− i(e−2πi`/nDn
4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)).

Dnf(`+
3n

4
) = Dn

2
fe(`+

3n

4
) +

(
e−2πi(`+ 3n

4
)/nDn

4
fo,1(`+

3n

4
) + e−2πi3(`+ 3n

4
)/nDn

4
fo,2(`+

3n

4
)

)
= Dn

2
fe(`+ n

4 ) + i(e−2πi`/nDn
4
fo,1(`)− e−2πi3`/nDn

4
fo,2(`)).

(iii) Explain how the observations in Part (ii) allow you to compute Dnf from Dn
2
fe,

Dn
4
fo,1 and Dn

4
fo,2 using 6n real operations. [Note, multiplications with ±1 or ±i

do not count, since they amount to negation of real or imaginary parts, which can
be absorbed into the next operation by changing it from addition to subtraction or
vice versa]

Proof by Michael Markiewicz. Let 0 ≤ ` ≤ n
4 − 1. First we have to compute both

e−2πi`/nDn
4
fo,1(`) and e−2πi3`/nDn

4
fo,2(`) which takes 12 real operations (since mul-

tiplying two complex numbers takes 6 operations and we do that twice).

Next, we can find e−2πi`/nDn
4
fo,1(`) + e−2πi3`/nDn

4
fo,2(`) and e−2πi`/nDn

4
fo,1(`)−

e−2πi3`/nDn
4
fo,2(`) using 2 complex additions for a total of 4 real operations (since

a complex addition is equivalent to two real operations).

Finally, we can compute Dnf(`), Dnf(` + n
2 ), Dnf(` + n

4 ), and Dnf(` + 3n
4 ) only

using one more complex additions each by utilizing the equations we showed in
part (ii). Thus, this takes an additional 8 real operations (since a complex addition
is equivalent to two real operations).

Therefore, for this particular `, we used 24 real operations. Since we have to do
this for n

4 different values of `, then in total we used 24 · n4 = 6n real operations.

By doing this procedure for every 0 ≤ l ≤ n
4 − 1, we compute Dnf(`) from

Dn
2
fe(`),Dn

4
fo,1(`), and Dn

4
fo,2(`) for all 0 ≤ ` ≤ n− 1 in only 6n operations.

(iv) Show that part (iii) implies that the number of real operations taken by the split-
radix FFT, denoted again as An, satisfies the recursion

An = An
2

+ 2An
4

+ 6n.
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Explain why A1 = 0 and A2 = 4. Use this to show that An ≤ 4n log2 n. [Hint:
Define Bn = An − 4n log2 n and show that Bn satisfies

Bn = Bn
2

+ 2Bn
4

with B1 = 0 and B2 = −4. Use this to argue that Bn ≤ 0 for all power-of-two n.]
[Note: If one is more careful about redundant computations (there are additional
multiplications with ±1 or ±i that can be skipped), then the complexity of the
split-radix FFT algorithm is actually 4n log2 n− 6n+ 8 real operations].

Proof by Michael Markiewicz. We define

An = Number of real operations taken by the split-radix FFT on L2(Zn).

We first note that A1 = 0 since D1 is the identity. We also note that A2 = 4 since
we need to calculate

D2f(`) =

1∑
k=0

f(k)ω−k` = f(0) + f(1)ω−`

for ` = 0, 1. For ` = 0, we only need 1 complex addition to do f(0) + f(1). For
` = 1, we only need 1 complex addition to do

f(0) + f(1)ω−1 = f(0) + f(1)e−πi = f(0)− f(1).

So in total, we only need 2 complex additions for calculating D2f which equates
to 4 real operations.

Thus, at step m > 2, we must first compute Dn
2
fe, Dn

4
fo,1, and Dn

4
fo,2 which take

An
2
, An

4
, and An

4
steps respectively (this is by the definition of An). After we

calculate those discrete Fourier transforms, we have to compute Dnf(`),Dnf(` +
n
2 ),Dnf(`+ n

4 ), and Dnf(`+ 3n
4 ) for all 0 ≤ ` ≤ n

4 − 1 which we have shown takes
6n steps.

In total, to calculate the Fourier transform at step m using the Split-Radix FFT,
it takes

An
2

+An
4

+An
4

+ 6n = An
2

+ 2An
4

+ 6n

steps.

Now we define
Bn = An − 4n log2 n.

Then
B1 = A1 − 4(1) log2(1) = A1 = 0

and
B2 = A2 − 4(2) log2(2) = A2 − 8 = −4.
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We can further show the following about Bn:

Bn = An − 4n log2 n

= An
2

+ 2An
4

+ 6n− 4n log2 n

= An
2

+ 2An
4

+ (2n+ 4n)− 4n log2 n

= An
2

+ 2An
4

+ (2n log2(2) + 2n log2(4))− 4n log2 n

= An
2

+ 2An
4
− (2n log2 n− 2n log2(2))− (2n log2 n− 2n log2(4))

= An
2

+ 2An
4
− 2n log2(

n

2
)− 2n log2(

n

4
)

=
(
An

2
− 2n log2(

n

2
)
)

+ 2
(
An

4
− n log2(

n

4
)
)

=
(
An

2
− 4(

n

2
) log2(

n

2
)
)

+ 2
(
An

4
− 4(

n

4
) log2(

n

4
)
)

= Bn
2

+ 2Bn
4
.

We show by strong mathematical induction that Bn ≤ 0 for all powers of 2. We
have already shown the base cases of B1 = 0 and B2 = −4 so we move to the
inductive step. Assume Bm ≤ 0 for all powers of 2 less k where k is some power of
2. Then for Bk, we have

Bk = B k
2

+ 2B k
4
.

Since we assumed that all powers of 2 less than k were nonpositive, then B k
2
≤ 0

and B k
2
≤ 0 and the sum of nonpositive numbers is also nonpositive. Therefore,

Bk ≤ 0.

This completes our proof by mathematical induction that Bn ≤ 0 for all powers of 2.
This also implies that An − 4n log2 n ≤ 0 =⇒ An ≤ 4n log2 n by definition of Bn.
Thus, the complexity of the split-radix FFT is at most 4n log2 n real operations.

2. Discrete derivatives (difference quotients) can be interpreted as convolutions. Complete
the following exercises.

(i) For f ∈ L2(Zn) define the backward difference

∇−f(k) = f(k)− f(k − 1).

Find g ∈ L2(Zn) so that ∇−f = g ∗ f and use the DFT convolution property
D(g ∗ f) = DgDf to show that D(∇−f)(k) = (1− ω−k)Df(k), where ω = e2πi/n.

Proof by Dingjun Bian. We define g ∈ L2(Zn) to be

g(x) =


1, when x = 0
−1, when x = 1
0, otherwise.
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Then we must have

g ∗ f(k) =
n−1∑
j=0

g(j)f(k − j)

= g(0)f(k) + g(1)f(k − 1)

= f(k)− f(k − 1)

= ∇−f(k)

Therefore, we have

D(∇−f)(k) = D(g ∗ f(k))

= Dg(k)Df(k)

=

(
n−1∑
l=0

g(l)e
−2πikl
n

)
Df(k)

= (1− e−
2πik
n )Df(k)

= (1− ω−k)Df(k),

where ω = e
2πi
n . Therefore, we have proven the desired result.

(ii) For f ∈ L2(Zn) define the forward difference

∇+f(k) = f(k + 1)− f(k).

Find g ∈ L2(Zn) so that ∇+f = g ∗ f use this to show that D(∇+f)(k) = (ωk −
1)Df(k).

Proof by Dingjun Bian. We define g ∈ L2(Zn) such that

g(x) =


−1, when x = 0
1, when x = n - 1
0, otherwise.

Then we must have

g ∗ f(k) =
n−1∑
j=0

g(j)f(k − j)

= g(0)f(k) + g(n− 1)f(k − n+ 1)

= −f(k) + f(k + 1− n)

= f(k + 1)− f(k)

= ∇+f(k)
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Therefore, we have

D(∇+f)(k) = D(g ∗ f(k))

= Dg(k)Df(k)

=

(
n−1∑
l=0

g(l)e
−2πikl
n

)
Df(k)

= (−1 + e−
2πik(n−1)

n )Df(k)

= (e
2πik
n − 1)Df(k)

= (ωk − 1)Df(k),

where ω = e
2πi
n . Therefore, we have proven the desired result.

(iii) For f ∈ L2(Zn) define the centered difference by

∇f(k) =
1

2
(∇−f(k) +∇+f(k)) =

1

2
(f(k + 1)− f(k − 1)).

Use parts (i) and (ii) to show that

D(∇f)(k) =
1

2
(ωk − ω−k)Df(k) = i sin(2πk/n)Df(k).

Proof by Dingjun Bian. We note that

D(∇f)(k) = D(
1

2
(∇−f(k) +∇+f(k)))

=
n−1∑
l=0

1

2
(∇−f(l) +∇+f(l))ωkl

=
1

2

(
n−1∑
l=0

∇−f(l)ωkl +

n−1∑
l=0

∇+f(l)ωkl

)

=
1

2

(
D(∇+f)(k) +D(∇−f)(k))

)
=

1

2

(
(ωk − 1)Df(k) + (1− ω−k)Df(k)

)
=

1

2
(ωk − ω−k)Df(k)

=
1

2
(e

2πik
n − e−

2πik
n )Df(k)

=
1

2

(
cos

2πk

n
+ i sin

2πk

n
− cos

2πk

n
+ i sin

2πk

n

)
Df(k)

= i sin
2πk

n
Df(k).

Therefore, we have proven the desired result.

7



(iv) For f ∈ L2(Zn), define the discrete Laplacian as

∆f(k) = ∇+∇−f(k) = f(k + 1)− 2f(k) + f(k − 1).

Use parts (i) and (ii) to show that

D(∆f)(k) = (ωk + ω−k − 2)Df(k) = 2(cos(2πk/n)− 1)Df(k).

Proof by Dingjun Bian. We note that

D(∆f)(k) = D(∇+∇−f)(k)

= (ωk − 1)D(∇−f)(k)

= (ωk − 1)(1− ω−k)Df(k)

= (ωk − ωk−k − 1 + ω−k)Df(k)

= (ωk + ω−k − 2)Df(k)

=

(
cos

2πk

n
+ i sin

2πk

n
+ cos

2πk

n
− i sin

2πk

n
− 2

)
Df(k)

= 2

(
cos

2πk

n
− 1

)
Df(k).

Therefore, we have proven the desired result.

3. Consider the Poisson equation
∆u = f on Zn. (2)

The source term f ∈ L2(Zn) is given, and u ∈ L2(Zn) is the unknown we wish to solve
for. The discrete Laplacian ∆ is defined in Problem 2. Use the DFT and the results from
Problem 2 to derive a solution formula for u using one forward transform D and one
inverse transform D−1. Is there a condition you need to place on Df for your solution
formula to make sense? [Hint: Take the DFT of both sides of (2), solve for Du, and then
apply the inverse DFT D−1. Be careful not to divide by zero when you solve for Du.]

Proof. Using the results in Part 2(iv) we take the DFT on both sides of the equation to
obtain

2(cos(2πk/n)− 1)Du(k) = Df(k). (3)

When k = 0, the left hand size vanishes, so Df(0) = 0 is a necessary condition for the
existence of a solution. This means that

0 = Df(0) =
n−1∑
j=0

f(j).

Thus, the function f must have mean value zero. Assuming this is the case, we can solve
for Du(k) in (3) for k ≥ 1, yielding

Du(k) =
Df(k)

2(cos(2πk/n)− 1)
.
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To write an expression that holds for all k ≥ 0, we define

G(k) =

{
1

2(cos(2πk/n)−1) , if k ≥ 1,

0, if k = 0.

Then we have Du(k) = G(k)Df(k) for all k, and hence by the convolution theorem we
have

u = g ∗ f
solves the Poisson equation (2), where g = D−1G. This solution satisfies Du(0) = 0,
but noting (3), the value of Du(0) does not enter into the equation, so we may set it
arbitrarily. Since

Du(0) =

n−1∑
j=0

u(j),

this amounts to setting the mean value of u arbitrarily. Thus, the most general form for
the solution of (2) is

u = C + g ∗ f,
where C ∈ R is an arbitrary constant. In this case Du(0) = Cn.

4. Let n ≥ 1 be odd. Show that for t 6∈ Z we have

1

n

n−1
2∑

k=−n−1
2

e2πikt =
sinc(nt)

sinc(t)
.

What happens when t ∈ Z? Here, sinc is the normalized sinc function sinc(t) = sin(πt)
πt .

Proof by Eduardo Torres Davilla. Let’s begin by showing for any t /∈ Z we have

1

n

n−1
2∑

k=−n−1
2

e2πikt =
sinc(nt)

sinc(t)

where sinc(t) = sin(πt)
πt . First let’s try to rewrite the summation on the left hand side so

that it’s easier to work with. Let’s define m = n−1
2 and r = e2πit which gives us

1

n

n−1
2∑

k=−n−1
2

e2πikt =
1

n

m∑
k=−m

rk.

Now let Sm =
∑m

k=−m r
k and we notice that the following holds

r · Sm − Sm = r ·
m∑

k=−m
rk −

m∑
k=−m

rk

=
m∑

k=−m
rk+1 −

m∑
k=−m

rk

= r−m+1 + r−m+2 + · · ·+ rm + rm+1 − r−m − r−m+1 − · · · − rm

= rm+1 − r−m

9



thus showing us that

r · Sm − Sm = rm+1 − r−m

⇐⇒ Sm(r − 1) = rm+1 − r−m

⇐⇒ Sm =
rm+1 − r−m

r − 1

⇐⇒ Sm =

(
r1/2

r1/2

)
rm+(1/2) − r−m−(1/2)

r1/2 − r−1/2
.

Now let’s continue by substituting back r = e2πit,m = n−1
2 , and use the identity of

eiθ − e−iθ = 2i sin(θ) which gives us the following

1

n

n−1
2∑

k=−n−1
2

e2πikt =
1

n

m∑
k=−m

rk

=
1

n

(
r1/2

r1/2

)
rm+(1/2) − r−m−(1/2)

r1/2 − r−1/2

=
1

n

(
e2πit(m+(1/2)) − e−2πit(m+(1/2))

eπit − e−πit

)

=
1

n

(
2i sin(2πt(m+ (1/2)))

2i sin(πt)

)
=

1

n

(
sin(2πt((n− 1)/2 + (1/2)))

sin(πt)

)
=

sin(nπt)

n sin(πt)

=
sin(nπt)

nπt
· πt

sin(πt)

=
sin(nπt)
nπt

sin(πt)
πt

=
sinc(nπt)

sinc(πt)

giving us the desired equality.

Now, we continue to show what happens when t ∈ Z. If t ∈ Z we have the following on
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the left hand side of the equality

1

n

n−1
2∑

k=−n−1
2

e2πikt =
1

n

n−1
2∑

k=−n−1
2

cos(2πkt) + i sin(2πkt)

=
1

n

n−1
2∑

k=−n−1
2

1 + i · 0

=
1

n

n−1
2∑

k=−n−1
2

1

= 1

since cos(2π`) = 1 for any ` ∈ Z and sin(2π`) = 0 for any ` ∈ Z. Now, moving on to the
right hand side, we have the following

sinc(nπt)

sinc(πt)
=

sin(nπt)
nπt

sin(πt)
πt

=
sin(nπt)

nπt
· πt

sin(πt)

=
sin(nπt)

n sin(πt)

=
0

0

which is undefined thus the equality does not work if t ∈ Z.
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