Math 5467 - Homework 3 Solutions

1. (Split-Radix FFT) Assume $n \geq 4$ is a power of 2 and let $f \in L^{2}\left(\mathbb{Z}_{n}\right)$. Define $f_{e} \in L^{2}\left(\mathbb{Z}_{\frac{n}{2}}\right)$, and $f_{o, 1}, f_{o, 2} \in L^{2}\left(\mathbb{Z}_{\frac{n}{4}}\right)$ by

$$
f_{e}(k)=f(2 k), \quad f_{o, 1}(k)=f(4 k+1), \quad \text { and } \quad f_{o, 2}(k)=f(4 k+3)
$$

(i) Show that

$$
\begin{equation*}
\mathcal{D}_{n} f(\ell)=\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell) \tag{1}
\end{equation*}
$$

Proof by Michael Markiewicz. By definition of the discrete Fourier transform, we have

$$
\begin{aligned}
\mathcal{D}_{n} f(\ell) & =\sum_{k=0}^{n-1} f(k) e^{-2 \pi i k \ell / n} \\
& =\sum_{k=0}^{\frac{n}{2}-1} f(2 k) e^{-2 \pi i(2 k) \ell / n}+\sum_{k=0}^{\frac{n}{2}-1} f(2 k+1) e^{-2 \pi i(2 k+1) \ell / n} \\
& =\sum_{k=0}^{\frac{n}{2}-1} f(2 k) e^{-2 \pi i k \ell / \frac{n}{2}}+e^{-2 \pi i \ell / n} \sum_{k=0}^{\frac{n}{2}-1} f(2 k+1) e^{-2 \pi i k \ell / \frac{n}{2}} \\
& =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+e^{-2 \pi i \ell / n}\left(\sum_{k=0}^{\frac{n}{4}-1} f(4 k+1) e^{-2 \pi i(2 k) \ell / \frac{n}{2}}+\sum_{k=0}^{\frac{n}{4}-1} f(4 k+3) e^{-2 \pi i(2 k+1) \ell / \frac{n}{2}}\right) \\
& =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+e^{-2 \pi i \ell / n}\left(\sum_{k=0}^{\frac{n}{4}-1} f(4 k+1) e^{-2 \pi i k \ell / \frac{n}{4}}+e^{-2 \pi i \ell / \frac{n}{2}} \sum_{k=0}^{\frac{n}{4}-1} f(4 k+3) e^{-2 \pi i k \ell / \frac{n}{4}}\right) \\
& =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{(-2 \pi i \ell)(1 / n+2 / n)} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell) \\
& =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)
\end{aligned}
$$

as desired.
(ii) The FFT algorithm based on the 3-way split in (1) is called the split-radix FFT algorithm. There are a lot of redundant computations in (1), and these must be accounted for in order to realize the improved complexity of the split-radix FFT. Show that

$$
\begin{aligned}
\mathcal{D}_{n} f(\ell) & =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right), \\
\mathcal{D}_{n} f\left(\ell+\frac{n}{2}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)-\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right), \\
\mathcal{D}_{n} f\left(\ell+\frac{n}{4}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)-i\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right), \\
\mathcal{D}_{n} f\left(\ell+\frac{3 n}{4}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)+i\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right),
\end{aligned}
$$

for $0 \leq \ell \leq \frac{n}{4}-1$. This gives all the outputs of $\mathcal{D} f(\ell)$ and reduces the number of multiplications and additions required.

Proof by Michael Markiewicz. The first of the four equations comes from what we have shown in part (i):

$$
\mathcal{D}_{n} f(\ell)=\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)+\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right) .
$$

To show the next three equations, we first observe the following for $m \in \mathbb{Z}$:

$$
\begin{aligned}
& e^{-2 \pi i\left(\ell+m \frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}\left(\left(\ell+m \frac{n}{4}\right)\right)+e^{-2 \pi i 3\left(\ell+m \frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}\left(\left(\ell+m \frac{n}{4}\right)\right) \\
= & e^{-2 \pi i\left(\ell+m \frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3\left(\ell+m \frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell) \\
& \left(\operatorname{since} \mathcal{D}_{\frac{n}{4}} f_{o, 1}, \mathcal{D}_{\frac{n}{4}} f_{o, 2} \in l\left(\mathbb{Z}_{\frac{n}{4}}\right), \text { i.e., } n / 4 \text { periodic. }\right) \\
= & e^{-2 \pi i \ell / n} e^{-2 \pi i m \frac{n}{4} / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} e^{-2 \pi i 3 m \frac{n}{4} / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell) \\
= & e^{-2 \pi i \ell / n}\left(\cos \left(-\pi \frac{m}{2}\right)+i \sin \left(-\pi \frac{m}{2}\right)\right) \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell) \\
= & e^{-2 \pi i \ell / n}\left(\cos \left(\pi \frac{m}{2}\right)-i \sin \left(\pi \frac{m}{2}\right)\right) \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell) \\
& \quad+e^{-2 \pi i 3 \ell / n}\left(\cos \left(3 \pi \frac{m}{2}\right)-i \sin \left(3 \pi \frac{m}{2}\right)\right) \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)
\end{aligned}
$$

(since cosine is even and sine is odd).
Then for $m=1$, we have

$$
\begin{aligned}
& e^{-2 \pi i\left(\ell+\frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}\left(\left(\ell+\frac{n}{4}\right)\right)+e^{-2 \pi i 3\left(\ell+\frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}\left(\left(\ell+\frac{n}{4}\right)\right) \\
= & -i\left[e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right],
\end{aligned}
$$

and for $m=2$, we have

$$
\begin{aligned}
& e^{-2 \pi i\left(\ell+\frac{n}{2}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}\left(\left(\ell+\frac{n}{2}\right)\right)+e^{-2 \pi i 3\left(\ell+\frac{n}{2}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}\left(\left(\ell+\frac{n}{2}\right)\right) \\
= & -\left[e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right],
\end{aligned}
$$

and finally for $m=3$, we have

$$
\begin{aligned}
& e^{-2 \pi i\left(\ell+3 \frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}\left(\left(\ell+3 \frac{n}{4}\right)\right)+e^{-2 \pi i 3\left(\ell+3 \frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}\left(\left(\ell+3 \frac{n}{4}\right)\right) \\
= & i\left[e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right] .
\end{aligned}
$$

We also know that $\mathcal{D}_{\frac{n}{2}} f_{e} \in L^{2}\left(\mathbb{Z}_{\frac{n}{2}}\right)$ by definition, so

$$
\begin{gathered}
\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{2}\right)=\mathcal{D}_{\frac{n}{2}} f_{e}(\ell), \\
\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{3 n}{4}\right)=\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)
\end{gathered}
$$

since it is periodic with period $\frac{n}{2}$.

Using the equalities shown above, it is a direct consequence that the three equations hold:

$$
\begin{aligned}
\mathcal{D}_{n} f\left(\ell+\frac{n}{2}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{2}\right)+\left(e^{-2 \pi i\left(\ell+\frac{n}{2}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}\left(\ell+\frac{n}{2}\right)+e^{-2 \pi i 3\left(\ell+\frac{n}{2}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}\left(\ell+\frac{n}{2}\right)\right) \\
& =\mathcal{D}_{\frac{n}{2}} f_{e}(\ell)-\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right) . \\
\mathcal{D}_{n} f\left(\ell+\frac{n}{4}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)+\left(e^{-2 \pi i\left(\ell+\frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}\left(\ell+\frac{n}{4}\right)+e^{-2 \pi i 3\left(\ell+\frac{n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}\left(\ell+\frac{n}{4}\right)\right) \\
& =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)-i\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right) . \\
\mathcal{D}_{n} f\left(\ell+\frac{3 n}{4}\right) & =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{3 n}{4}\right)+\left(e^{-2 \pi i\left(\ell+\frac{3 n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}\left(\ell+\frac{3 n}{4}\right)+e^{-2 \pi i 3\left(\ell+\frac{3 n}{4}\right) / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}\left(\ell+\frac{3 n}{4}\right)\right) \\
& =\mathcal{D}_{\frac{n}{2}} f_{e}\left(\ell+\frac{n}{4}\right)+i\left(e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)\right) .
\end{aligned}
$$

(iii) Explain how the observations in Part (ii) allow you to compute $\mathcal{D}_{n} f$ from $\mathcal{D}_{\frac{n}{2}} f_{e}$, $\mathcal{D}_{\frac{n}{4}} f_{o, 1}$ and $\mathcal{D}_{\frac{n}{4}} f_{o, 2}$ using $6 n$ real operations. [Note, multiplications with ± 1 or $\pm i$ do not count, since they amount to negation of real or imaginary parts, which can be absorbed into the next operation by changing it from addition to subtraction or vice versa]

Proof by Michael Markiewicz. Let $0 \leq \ell \leq \frac{n}{4}-1$. First we have to compute both $e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)$ and $e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)$ which takes 12 real operations (since multiplying two complex numbers takes 6 operations and we do that twice).

Next, we can find $e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)+e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)$ and $e^{-2 \pi i \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)-$ $e^{-2 \pi i 3 \ell / n} \mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)$ using 2 complex additions for a total of 4 real operations (since a complex addition is equivalent to two real operations).

Finally, we can compute $\mathcal{D}_{n} f(\ell), \mathcal{D}_{n} f\left(\ell+\frac{n}{2}\right), \mathcal{D}_{n} f\left(\ell+\frac{n}{4}\right)$, and $\mathcal{D}_{n} f\left(\ell+\frac{3 n}{4}\right)$ only using one more complex additions each by utilizing the equations we showed in part (ii). Thus, this takes an additional 8 real operations (since a complex addition is equivalent to two real operations).

Therefore, for this particular ℓ, we used 24 real operations. Since we have to do this for $\frac{n}{4}$ different values of ℓ, then in total we used $24 \cdot \frac{n}{4}=6 n$ real operations.

By doing this procedure for every $0 \leq l \leq \frac{n}{4}-1$, we compute $\mathcal{D}_{n} f(\ell)$ from $\mathcal{D}_{\frac{n}{2}} f_{e}(\ell), \mathcal{D}_{\frac{n}{4}} f_{o, 1}(\ell)$, and $\mathcal{D}_{\frac{n}{4}} f_{o, 2}(\ell)$ for all $0 \leq \ell \leq n-1$ in only $6 n$ operations.
(iv) Show that part (iii) implies that the number of real operations taken by the splitradix FFT, denoted again as A_{n}, satisfies the recursion

$$
A_{n}=A_{\frac{n}{2}}+2 A_{\frac{n}{4}}+6 n .
$$

Explain why $A_{1}=0$ and $A_{2}=4$. Use this to show that $A_{n} \leq 4 n \log _{2} n$. [Hint: Define $B_{n}=A_{n}-4 n \log _{2} n$ and show that B_{n} satisfies

$$
B_{n}=B_{\frac{n}{2}}+2 B_{\frac{n}{4}}
$$

with $B_{1}=0$ and $B_{2}=-4$. Use this to argue that $B_{n} \leq 0$ for all power-of-two n.] [Note: If one is more careful about redundant computations (there are additional multiplications with ± 1 or $\pm i$ that can be skipped), then the complexity of the split-radix FFT algorithm is actually $4 n \log _{2} n-6 n+8$ real operations].

Proof by Michael Markiewicz. We define

$$
A_{n}=\text { Number of real operations taken by the split-radix FFT on } L^{2}\left(\mathbb{Z}_{n}\right) .
$$

We first note that $A_{1}=0$ since \mathcal{D}_{1} is the identity. We also note that $A_{2}=4$ since we need to calculate

$$
\mathcal{D}_{2} f(\ell)=\sum_{k=0}^{1} f(k) \omega^{-k \ell}=f(0)+f(1) \omega^{-\ell}
$$

for $\ell=0,1$. For $\ell=0$, we only need 1 complex addition to do $f(0)+f(1)$. For $\ell=1$, we only need 1 complex addition to do

$$
f(0)+f(1) \omega^{-1}=f(0)+f(1) e^{-\pi i}=f(0)-f(1) .
$$

So in total, we only need 2 complex additions for calculating $\mathcal{D}_{2} f$ which equates to 4 real operations.

Thus, at step $m>2$, we must first compute $\mathcal{D}_{\frac{n}{2}} f_{e}, \mathcal{D}_{\frac{n}{4}} f_{o, 1}$, and $\mathcal{D}_{\frac{n}{4}} f_{o, 2}$ which take $A_{\frac{n}{2}}, A_{\frac{n}{4}}$, and $A_{\frac{n}{4}}$ steps respectively (this is by the definition of A_{n}). After we calculate those discrete Fourier transforms, we have to compute $\mathcal{D}_{n} f(\ell), \mathcal{D}_{n} f(\ell+$ $\left.\frac{n}{2}\right), \mathcal{D}_{n} f\left(\ell+\frac{n}{4}\right)$, and $\mathcal{D}_{n} f\left(\ell+\frac{3 n}{4}\right)$ for all $0 \leq \ell \leq \frac{n}{4}-1$ which we have shown takes $6 n$ steps.

In total, to calculate the Fourier transform at step m using the Split-Radix FFT, it takes

$$
A_{\frac{n}{2}}+A_{\frac{n}{4}}+A_{\frac{n}{4}}+6 n=A_{\frac{n}{2}}+2 A_{\frac{n}{4}}+6 n
$$

steps.
Now we define

$$
B_{n}=A_{n}-4 n \log _{2} n .
$$

Then

$$
B_{1}=A_{1}-4(1) \log _{2}(1)=A_{1}=0
$$

and

$$
B_{2}=A_{2}-4(2) \log _{2}(2)=A_{2}-8=-4
$$

We can further show the following about B_{n} :

$$
\begin{aligned}
B_{n} & =A_{n}-4 n \log _{2} n \\
& =A_{\frac{n}{2}}+2 A_{\frac{n}{4}}+6 n-4 n \log _{2} n \\
& =A_{\frac{n}{2}}+2 A_{\frac{n}{4}}+(2 n+4 n)-4 n \log _{2} n \\
& =A_{\frac{n}{2}}+2 A_{\frac{n}{4}}+\left(2 n \log _{2}(2)+2 n \log _{2}(4)\right)-4 n \log _{2} n \\
& =A_{\frac{n}{2}}+2 A_{\frac{n}{4}}-\left(2 n \log _{2} n-2 n \log _{2}(2)\right)-\left(2 n \log _{2} n-2 n \log _{2}(4)\right) \\
& =A_{\frac{n}{2}}+2 A_{\frac{n}{4}}-2 n \log _{2}\left(\frac{n}{2}\right)-2 n \log _{2}\left(\frac{n}{4}\right) \\
& =\left(A_{\frac{n}{2}}-2 n \log _{2}\left(\frac{n}{2}\right)\right)+2\left(A_{\frac{n}{4}}-n \log _{2}\left(\frac{n}{4}\right)\right) \\
& =\left(A_{\frac{n}{2}}-4\left(\frac{n}{2}\right) \log _{2}\left(\frac{n}{2}\right)\right)+2\left(A_{\frac{n}{4}}-4\left(\frac{n}{4}\right) \log _{2}\left(\frac{n}{4}\right)\right) \\
& =B_{\frac{n}{2}}+2 B_{\frac{n}{4}} .
\end{aligned}
$$

We show by strong mathematical induction that $B_{n} \leq 0$ for all powers of 2 . We have already shown the base cases of $B_{1}=0$ and $B_{2}=-4$ so we move to the inductive step. Assume $B_{m} \leq 0$ for all powers of 2 less k where k is some power of 2. Then for B_{k}, we have

$$
B_{k}=B_{\frac{k}{2}}+2 B_{\frac{k}{4}}
$$

Since we assumed that all powers of 2 less than k were nonpositive, then $B_{\frac{k}{2}} \leq 0$ and $B_{\frac{k}{2}} \leq 0$ and the sum of nonpositive numbers is also nonpositive. Therefore, $B_{k} \leq 0$.

This completes our proof by mathematical induction that $B_{n} \leq 0$ for all powers of 2 . This also implies that $A_{n}-4 n \log _{2} n \leq 0 \Longrightarrow A_{n} \leq 4 n \log _{2} n$ by definition of B_{n}. Thus, the complexity of the split-radix FFT is at most $4 n \log _{2} n$ real operations.
2. Discrete derivatives (difference quotients) can be interpreted as convolutions. Complete the following exercises.
(i) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the backward difference

$$
\nabla^{-} f(k)=f(k)-f(k-1)
$$

Find $g \in L^{2}\left(\mathbb{Z}_{n}\right)$ so that $\nabla^{-} f=g * f$ and use the DFT convolution property $\mathcal{D}(g * f)=\mathcal{D} g \mathcal{D} f$ to show that $\mathcal{D}\left(\nabla^{-} f\right)(k)=\left(1-\omega^{-k}\right) \mathcal{D} f(k)$, where $\omega=e^{2 \pi i / n}$.

Proof by Dingjun Bian. We define $g \in L^{2}\left(\mathbf{Z}_{n}\right)$ to be

$$
g(x)= \begin{cases}1, & \text { when } \mathrm{x}=0 \\ -1, & \text { when } \mathrm{x}=1 \\ 0, & \text { otherwise }\end{cases}
$$

Then we must have

$$
\begin{aligned}
g * f(k) & =\sum_{j=0}^{n-1} g(j) f(k-j) \\
& =g(0) f(k)+g(1) f(k-1) \\
& =f(k)-f(k-1) \\
& =\nabla^{-} f(k)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\mathcal{D}\left(\nabla^{-} f\right)(k) & =\mathcal{D}(g * f(k)) \\
& =\mathcal{D} g(k) \mathcal{D} f(k) \\
& =\left(\sum_{l=0}^{n-1} g(l) e^{\frac{-2 \pi i k l}{n}}\right) \mathcal{D} f(k) \\
& =\left(1-e^{-\frac{2 \pi i k}{n}}\right) \mathcal{D} f(k) \\
& =\left(1-\omega^{-k}\right) \mathcal{D} f(k),
\end{aligned}
$$

where $\omega=e^{\frac{2 \pi i}{n}}$. Therefore, we have proven the desired result.
(ii) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the forward difference

$$
\nabla^{+} f(k)=f(k+1)-f(k)
$$

Find $g \in L^{2}\left(\mathbb{Z}_{n}\right)$ so that $\nabla^{+} f=g * f$ use this to show that $\mathcal{D}\left(\nabla^{+} f\right)(k)=\left(\omega^{k}-\right.$ 1) $\mathcal{D} f(k)$.

Proof by Dingjun Bian. We define $g \in L^{2}\left(\mathbf{Z}_{n}\right)$ such that

$$
g(x)= \begin{cases}-1, & \text { when } \mathrm{x}=0 \\ 1, & \text { when } \mathrm{x}=\mathrm{n}-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then we must have

$$
\begin{aligned}
g * f(k) & =\sum_{j=0}^{n-1} g(j) f(k-j) \\
& =g(0) f(k)+g(n-1) f(k-n+1) \\
& =-f(k)+f(k+1-n) \\
& =f(k+1)-f(k) \\
& =\nabla^{+} f(k)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\mathcal{D}\left(\nabla^{+} f\right)(k) & =\mathcal{D}(g * f(k)) \\
& =\mathcal{D} g(k) \mathcal{D} f(k) \\
& =\left(\sum_{l=0}^{n-1} g(l) e^{\frac{-2 \pi i k l}{n}}\right) \mathcal{D} f(k) \\
& =\left(-1+e^{-\frac{2 \pi i k(n-1)}{n}}\right) \mathcal{D} f(k) \\
& =\left(e^{\frac{2 \pi i k}{n}}-1\right) \mathcal{D} f(k) \\
& =\left(\omega^{k}-1\right) \mathcal{D} f(k),
\end{aligned}
$$

where $\omega=e^{\frac{2 \pi i}{n}}$. Therefore, we have proven the desired result.
(iii) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ define the centered difference by

$$
\nabla f(k)=\frac{1}{2}\left(\nabla^{-} f(k)+\nabla^{+} f(k)\right)=\frac{1}{2}(f(k+1)-f(k-1)) .
$$

Use parts (i) and (ii) to show that

$$
\mathcal{D}(\nabla f)(k)=\frac{1}{2}\left(\omega^{k}-\omega^{-k}\right) \mathcal{D} f(k)=i \sin (2 \pi k / n) \mathcal{D} f(k) .
$$

Proof by Dingjun Bian. We note that

$$
\begin{aligned}
\mathcal{D}(\nabla f)(k) & =\mathcal{D}\left(\frac{1}{2}\left(\nabla^{-} f(k)+\nabla^{+} f(k)\right)\right) \\
& =\sum_{l=0}^{n-1} \frac{1}{2}\left(\nabla^{-} f(l)+\nabla^{+} f(l)\right) \omega^{k l} \\
& =\frac{1}{2}\left(\sum_{l=0}^{n-1} \nabla^{-} f(l) \omega^{k l}+\sum_{l=0}^{n-1} \nabla^{+} f(l) \omega^{k l}\right) \\
& \left.=\frac{1}{2}\left(\mathcal{D}\left(\nabla^{+} f\right)(k)+\mathcal{D}\left(\nabla^{-} f\right)(k)\right)\right) \\
& =\frac{1}{2}\left(\left(\omega^{k}-1\right) \mathcal{D} f(k)+\left(1-\omega^{-k}\right) \mathcal{D} f(k)\right) \\
& =\frac{1}{2}\left(\omega^{k}-\omega^{-k}\right) \mathcal{D} f(k) \\
& =\frac{1}{2}\left(e^{\frac{2 \pi i k}{n}}-e^{-\frac{2 \pi i k}{n}}\right) \mathcal{D} f(k) \\
& =\frac{1}{2}\left(\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n}-\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n}\right) \mathcal{D} f(k) \\
& =i \sin \frac{2 \pi k}{n} \mathcal{D} f(k) .
\end{aligned}
$$

Therefore, we have proven the desired result.
(iv) For $f \in L^{2}\left(\mathbb{Z}_{n}\right)$, define the discrete Laplacian as

$$
\Delta f(k)=\nabla^{+} \nabla^{-} f(k)=f(k+1)-2 f(k)+f(k-1) .
$$

Use parts (i) and (ii) to show that

$$
\mathcal{D}(\Delta f)(k)=\left(\omega^{k}+\omega^{-k}-2\right) \mathcal{D} f(k)=2(\cos (2 \pi k / n)-1) \mathcal{D} f(k)
$$

Proof by Dingjun Bian. We note that

$$
\begin{aligned}
\mathcal{D}(\Delta f)(k) & =\mathcal{D}\left(\nabla^{+} \nabla^{-} f\right)(k) \\
& =\left(\omega^{k}-1\right) \mathcal{D}\left(\nabla^{-} f\right)(k) \\
& =\left(\omega^{k}-1\right)\left(1-\omega^{-k}\right) \mathcal{D} f(k) \\
& =\left(\omega^{k}-\omega^{k-k}-1+\omega^{-k}\right) \mathcal{D} f(k) \\
& =\left(\omega^{k}+\omega^{-k}-2\right) \mathcal{D} f(k) \\
& =\left(\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n}+\cos \frac{2 \pi k}{n}-i \sin \frac{2 \pi k}{n}-2\right) \mathcal{D} f(k) \\
& =2\left(\cos \frac{2 \pi k}{n}-1\right) \mathcal{D} f(k) .
\end{aligned}
$$

Therefore, we have proven the desired result.
3. Consider the Poisson equation

$$
\begin{equation*}
\Delta u=f \quad \text { on } \mathbb{Z}_{n} . \tag{2}
\end{equation*}
$$

The source term $f \in L^{2}\left(\mathbb{Z}_{n}\right)$ is given, and $u \in L^{2}\left(\mathbb{Z}_{n}\right)$ is the unknown we wish to solve for. The discrete Laplacian Δ is defined in Problem 2. Use the DFT and the results from Problem 2 to derive a solution formula for u using one forward transform \mathcal{D} and one inverse transform \mathcal{D}^{-1}. Is there a condition you need to place on $\mathcal{D} f$ for your solution formula to make sense? [Hint: Take the DFT of both sides of (2), solve for $\mathcal{D} u$, and then apply the inverse DFT \mathcal{D}^{-1}. Be careful not to divide by zero when you solve for $\mathcal{D} u$.]

Proof. Using the results in Part 2(iv) we take the DFT on both sides of the equation to obtain

$$
\begin{equation*}
2(\cos (2 \pi k / n)-1) \mathcal{D} u(k)=\mathcal{D} f(k) \tag{3}
\end{equation*}
$$

When $k=0$, the left hand size vanishes, so $\mathcal{D} f(0)=0$ is a necessary condition for the existence of a solution. This means that

$$
0=\mathcal{D} f(0)=\sum_{j=0}^{n-1} f(j)
$$

Thus, the function f must have mean value zero. Assuming this is the case, we can solve for $\mathcal{D} u(k)$ in (3) for $k \geq 1$, yielding

$$
\mathcal{D} u(k)=\frac{\mathcal{D} f(k)}{2(\cos (2 \pi k / n)-1)} .
$$

To write an expression that holds for all $k \geq 0$, we define

$$
G(k)= \begin{cases}\frac{1}{2(\cos (2 \pi k / n)-1)}, & \text { if } k \geq 1, \\ 0, & \text { if } k=0\end{cases}
$$

Then we have $\mathcal{D} u(k)=G(k) \mathcal{D} f(k)$ for all k, and hence by the convolution theorem we have

$$
u=g * f
$$

solves the Poisson equation (2), where $g=\mathcal{D}^{-1} G$. This solution satisfies $\mathcal{D} u(0)=0$, but noting (3), the value of $\mathcal{D} u(0)$ does not enter into the equation, so we may set it arbitrarily. Since

$$
\mathcal{D} u(0)=\sum_{j=0}^{n-1} u(j),
$$

this amounts to setting the mean value of u arbitrarily. Thus, the most general form for the solution of (2) is

$$
u=C+g * f,
$$

where $C \in \mathbb{R}$ is an arbitrary constant. In this case $\mathcal{D} u(0)=C n$.
4. Let $n \geq 1$ be odd. Show that for $t \notin \mathbb{Z}$ we have

$$
\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2 \pi i k t}=\frac{\operatorname{sinc}(n t)}{\operatorname{sinc}(t)} .
$$

What happens when $t \in \mathbb{Z}$? Here, sinc is the normalized sinc function $\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}$.
Proof by Eduardo Torres Davilla. Let's begin by showing for any $t \notin \mathbb{Z}$ we have

$$
\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2 \pi i k t}=\frac{\operatorname{sinc}(n t)}{\operatorname{sinc}(t)}
$$

where $\operatorname{sinc}(t)=\frac{\sin (\pi t)}{\pi t}$. First let's try to rewrite the summation on the left hand side so that it's easier to work with. Let's define $m=\frac{n-1}{2}$ and $r=e^{2 \pi i t}$ which gives us

$$
\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2 \pi i k t}=\frac{1}{n} \sum_{k=-m}^{m} r^{k} .
$$

Now let $S_{m}=\sum_{k=-m}^{m} r^{k}$ and we notice that the following holds

$$
\begin{aligned}
r \cdot S_{m}-S_{m} & =r \cdot \sum_{k=-m}^{m} r^{k}-\sum_{k=-m}^{m} r^{k} \\
& =\sum_{k=-m}^{m} r^{k+1}-\sum_{k=-m}^{m} r^{k} \\
& =r^{-m+1}+r^{-m+2}+\cdots+r^{m}+r^{m+1}-r^{-m}-r^{-m+1}-\cdots-r^{m} \\
& =r^{m+1}-r^{-m}
\end{aligned}
$$

thus showing us that

$$
\begin{aligned}
& r \cdot S_{m}-S_{m} & =r^{m+1}-r^{-m} \\
& \Longleftrightarrow \quad S_{m}(r-1) & =r^{m+1}-r^{-m} \\
& \Longleftrightarrow \quad S_{m} & =\frac{r^{m+1}-r^{-m}}{r-1} \\
& \Longleftrightarrow \quad S_{m} & =\left(\frac{r^{1 / 2}}{r^{1 / 2}}\right) \frac{r^{m+(1 / 2)}-r^{-m-(1 / 2)}}{r^{1 / 2}-r^{-1 / 2}} .
\end{aligned}
$$

Now let's continue by substituting back $r=e^{2 \pi i t}, m=\frac{n-1}{2}$, and use the identity of $e^{i \theta}-e^{-i \theta}=2 i \sin (\theta)$ which gives us the following

$$
\begin{aligned}
\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2 \pi i k t} & =\frac{1}{n} \sum_{k=-m}^{m} r^{k} \\
& =\frac{1}{n}\left(\frac{r^{1 / 2}}{r^{1 / 2}}\right) \frac{r^{m+(1 / 2)}-r^{-m-(1 / 2)}}{r^{1 / 2}-r^{-1 / 2}} \\
& =\frac{1}{n}\left(\frac{e^{2 \pi i t(m+(1 / 2))}-e^{-2 \pi i t(m+(1 / 2))}}{e^{\pi i t}-e^{-\pi i t}}\right) \\
& =\frac{1}{n}\left(\frac{2 i \sin (2 \pi t(m+(1 / 2)))}{2 i \sin (\pi t)}\right) \\
& =\frac{1}{n}\left(\frac{\sin (2 \pi t((n-1) / 2+(1 / 2)))}{\sin (\pi t)}\right) \\
& =\frac{\sin (n \pi t)}{n \sin (\pi t)} \\
& =\frac{\sin (n \pi t)}{n \pi t} \cdot \frac{\pi t}{\sin (\pi t)} \\
& =\frac{\frac{\sin (n \pi t)}{n \pi t}}{\frac{\sin (\pi t)}{\pi t}} \\
& =\frac{\operatorname{sinc}(n \pi t)}{\operatorname{sinc}(\pi t)}
\end{aligned}
$$

giving us the desired equality.
Now, we continue to show what happens when $t \in \mathbb{Z}$. If $t \in \mathbb{Z}$ we have the following on
the left hand side of the equality

$$
\begin{aligned}
\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} e^{2 \pi i k t} & =\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \cos (2 \pi k t)+i \sin (2 \pi k t) \\
& =\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} 1+i \cdot 0 \\
& =\frac{1}{n} \sum_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} 1 \\
& =1
\end{aligned}
$$

since $\cos (2 \pi \ell)=1$ for any $\ell \in \mathbb{Z}$ and $\sin (2 \pi \ell)=0$ for any $\ell \in \mathbb{Z}$. Now, moving on to the right hand side, we have the following

$$
\begin{aligned}
\frac{\operatorname{sinc}(n \pi t)}{\operatorname{sinc}(\pi t)} & =\frac{\frac{\sin (n \pi t)}{n \pi t}}{\frac{\sin (\pi t)}{\pi t}} \\
& =\frac{\sin (n \pi t)}{n \pi t} \cdot \frac{\pi t}{\sin (\pi t)} \\
& =\frac{\sin (n \pi t)}{n \sin (\pi t)} \\
& =\frac{0}{0}
\end{aligned}
$$

which is undefined thus the equality does not work if $t \in \mathbb{Z}$.

