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Last time

• Gradient descent

Today

• Momentum descnet



Gradient Descent

Gradient descent is one of the most important algorithms in many areas of science
and engineering. To minimize an objective function f : Rn ! R, gradient descent
iterates

(1) xk+1 = xk � ↵rf(xk)

until convergence. The parameter ↵ > 0 is the time step (often called the learning
rate when using gradient descent to train machine learning algorithms).



Assumptions on f

We assume the objective function f : Rn ! R is a smooth function that admits a
global minimizer x⇤ 2 Rn. That is

f(x⇤)  f(x)

for all x 2 Rn. We denote the optimal value of f by f⇤ := f(x⇤).



Sublinear convergence rate

We say rf is L-Lipschitz continuous if

(2) krf(x)�rf(y)k  Lkx� yk for all x, y 2 Rn
.

Theorem 1. Assume rf is L-Lipschitz and that ↵  1
L . Then for any integer

t � 1 we have

(3) min
0kt

krf(xk)k2  2(f(x0)� f⇤)

↵t
.

Remark 2. The theorem says, with very few assumptions on f , that gradient
descent converges at a rate of O

�
1
t

�
to a critical point of f , in the sense that

rf ⇠ 1
t ! 0. Since f is not assumed to be convex, critical points need not be

minimizers and could be also include saddle points.



Linear convergence

To obtain a better convergence rate, we need to make an additional assumption
about how flat f can be at minima. We say that f is µ-strongly convex if

(4) f(y) � f(x) +rf(x)T (y � x) +
µ

2
kx� yk2

for all x, y 2 Rn.

Note: If we take x = x⇤ then rf(x⇤) = 0 and we get

(5) f(y) � f⇤ +
µ

2
ky � x⇤k2.



Polyak-Lojasiewicz (PL) inequality

If f is µ-strongly convex, then f satisfies the PL inequality

(6)
1

2
krf(x)k2 � µ(f(x)� f⇤)

for all x 2 Rn.

Remark 3. The PL inequality is weaker than strong convexity, and even nonconvex
functions can satisfy it (as an exercise, show that f(x) = x

2 + 3 sin2(x) satisfies the
PL inequality (6) with µ = 1

32 , but f is not convex).



Linear convergence

Theorem 4. Assume f satisfies the PL inequality (6), rf is L-Lipschitz, and take
↵  1

L . Then for any integer t � 0 we have

(7) f(xt)� f⇤  (1� ↵µ)t(f(x0)� f
⇤).

Remark 5. The best rate is obtained by taking ↵ = 1
L in which case we obtain

f(xt)� f⇤ 
⇣
1� µ

L

⌘t
(f(x0)� f

⇤).

The ratio  = µ
L is called the condition number of f (or rather of r2

f), and controls
the rate of convergence of gradient descent.



Issues with gradient descent

(a) ↵ = 0.05, 12 steps (b) ↵ = 0.01, 50 steps

Figure 1: Gradient descent on a parabolic function with different choices of time
steps. For larger time steps the iterations bounce back and forth, limiting progress
towards the minimizer, while for smaller time steps the descent path is more direct.



Momentum descent

One of the oldest momentum based methods is the heavy ball method of Polyak.
The heavy ball method iterates

(8) xk+1 = xk � ↵rf(xk) + �(xk � xk�1),

where ↵ is the time step and � 2 [0, 1] is the momentum parameter, where x1 = x0.

• The idea is that the descent direction has memory, or momentum. This aver-
ages out the bouncing effect in gradient descent, and accelerates convergence
when the descent directions align over many iterations (near the minimizer).

• As we will see, the descent equations share similarities with the equations of
motion for a ball rolling down the energy landscape, so it is also called the
heavy ball method.



Heavy ball method

(a) ↵ = 0.05,� = 0.1, 12 steps (b) ↵ = 0.01,� = 0.25, 50 steps

Figure 2: Heavy ball method for different choices of time step and momentum
parameter. Momentum acts to average out the descent direction in time, limiting the
bouncing effect for larger time steps. Momentum builds up speed and makes more
progress towards the minimizer in the same number of steps as gradient descent.



Recall: Gradient descent

(a) ↵ = 0.05, 12 steps (b) ↵ = 0.01, 50 steps

Figure 3: Gradient descent on a parabolic function with different choices of time
steps. For larger time steps the iterations bounce back and forth, limiting progress
towards the minimizer, while for smaller time steps the descent path is more direct.



Continuum perspective: Gradient Descent

For gradient descent (1), we can rewrite the equation as

xk+1 � xk

↵
= �rf(xk).

By assuming xk = x(↵t) for a smooth curve x(t), we find that the left hand side
is merely a forward differences approximation for x

0(t), and so gradient descent is
equivalent in the continuum to the ordinary differential equation (ODE)

x
0(t) = �rf(x(t)).



Continuum perspective: Heavy ball method

On the other hand, when we rearrange the heavy ball method iteration (8) in a
similar way, we obtain

(9)
xk+1 � 2xk + xk�1

↵
+

1� �

↵
(xk � xk�1) = �rf(xk).





Discrete approximations of derivatives

Exercise 6. Show that

x(t)� x(t� h)

h
= x

0(t) +O(h),

and
x(t+ h)� 2x(t) + x(t� h)

h2
= x

00(t) +O(h2)

for a smooth curve x(t). To do this, use the Taylor expansions

x(t± h) = x(t)± x
0(t)h+

h
2

2
x
00(t)± h

3

6
x
000(t) +O(h4). 4



Continuum perspective: Heavy ball method

Recalling the heavy ball method can be written as

xk+1 � 2xk + xk�1

↵
+

1� �p
↵

✓
xk � xk�1p

↵

◆
= �rf(xk).

we can use Exercise 6 to see that this is a discretization of the ODE

(10) x
00(t) +

1� �p
↵

x
0(t) = �rf(x(t)).

• These are the equations of motion (Newton’s law) for the motion of an object
under the force �rf(x(t)) with damping/friction coefficient 1��p

↵
.

• This suggests choosing � so that

1� �p
↵

= c

that is � = 1� c
p
↵.



Analysis of heavy ball method

The analysis of the heavy ball method is more involved, compared to gradient de-
scent. We will analyze the method in the special case of solving the linear system

(11) Ax = b,

where A is an n⇥ n positive definite and symmetric matrix (e.g., a discrete Lapla-
cian). We can solve this equation by minimizing

f(x) =
1

2
x
T
Ax� x

T
b.

Note that rf(x) = Ax� b.



Gradient descent

Theorem 7. Suppose xk satisfies

(12) xk+1 = xk � ↵(Axk � b)

for all k � 1, and assume ↵  1
L . Then we have

(13) (1� ↵L)k  kxk � x⇤k
kx0 � x⇤k

 (1� ↵µ)k.

The proof is left as an exercise (or look in class notes).



Heavy ball method

Theorem 8. Suppose xk satisfies

(14) xk+1 = xk � ↵(Axk � b) + �(xk � xk�1)

for all k � 2 and x1 = x0. Let ↵  1
L and assume

(15) (1�p
↵µ)2  �  1.

Then for all k � 2 we have

(16) kxk � x⇤k2 + kxk+1 � x⇤k2  2�kkx0 � x⇤k2.

Remark 9. Theorem 8 suggests that the optimal choice for � is � = (1 �p
↵µ)2.

If we also take ↵ = 1
L and write  = µ

L then

Heavy ball: kxk � x⇤k 
p
2(1�

p
)kkx0 � x⇤k,

compared to

Gradient Descent: kxk � x⇤k  (1� )kkx0 � x⇤k.



Nesterov Acceleration

For convex functions that may not be strongly convex, Nesterov’s accelerated gra-
dient method can accelerate convergence. Nesterov’s method iterates

xk+1 = yk � ↵rf(yk), yk+1 = xk+1 +
k � 1

k + 2
(xk+1 � xk).

• The first step is gradient descent and the second step is a momentum correc-
tion, but the friction decreases to zero over time.

• Nesterov proved the method converges at an O
�

1
t2

�
rate for convex functions,

which is a substantial improvement over the O
�
1
t

�
rate for gradient descent.

• It turns out the O
�

1
t2

�
rate is provably optimal for minimizing convex functions

with first order methods.



Proof of Theorem 8






































