Mathematics of Image and Data Analysis Math 5467

Nesterov's accelerated gradient descent

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

Last time

- Heavy ball method

Today

- Continuum heavy ball method
- Nesterov's accelerated gradient descent

Heavy ball method

One of the oldest momentum based methods is the heavy ball method of Polyak. The heavy ball method iterates

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right)+\beta\left(x_{k}-x_{k-1}\right), \tag{1}
\end{equation*}
$$

where α is the time step and $\beta \in[0,1]$ is the momentum parameter, where $x_{1}=x_{0}$.

- The idea is that the descent direction has memory, or momentum. This averages out the bouncing effect in gradient descent, and accelerates convergence when the descent directions align over many iterations (near the minimizer).
- As we will see, the descent equations share similarities with the equations of motion for a ball rolling down the energy landscape, so it is also called the heavy ball method.

Continuum perspective: Heavy ball method
Recall the heavy ball method is a discretization of the ODE

$$
\begin{gather*}
x^{\prime}=-\nabla f \\
G D . \tag{2}
\end{gather*}
$$

where $a=\frac{1-\beta}{\sqrt{\alpha}}$.
Theorem 1. Suppose $x(t)$ solves (2) with $x(0)=x_{0} \in \mathbb{R}^{n}, x^{\prime}(0)=0$, and assume f is L-Lipschitz and μ-strongly convex. Let $x_{*} \in \mathbb{R}^{n}$ denote the unique minimizer of f. Then we have

$$
\begin{equation*}
\left\|x(t)-x_{*}\right\|^{2} \leq \frac{1}{3 \mu}\left(3 L+2 a^{2}\right)\left\|x_{0}-x_{*}\right\|^{2} \exp \left(-\frac{2 \mu a t}{3 L+2 a^{2}}\right) . \tag{3}
\end{equation*}
$$

Proof: Define the energy $\quad\left(y(t)=x(t)-x_{0}\right)$

$$
e(t)=3(\underbrace{\frac{1}{2}\left\|y^{\prime}\right\|^{2}}_{\text {kinetre ever }}+\underbrace{f(x)-f(x)}_{\text {potential }})+\frac{a^{2}}{2}\|y\|^{2}+a y^{\top} y^{\prime}
$$

Total enery $=$ kmetic + patential
Goal: $e^{\prime}(t) \leq-c e(t) \longrightarrow e(t) \leq e(0) e^{-c t}$
(1) $e(t) \geq 0$: By strong convexity if f

$$
\begin{aligned}
e(t) & \geq \frac{3}{2}\left\|y^{\prime}\right\|^{2}+\frac{3 \mu}{2}\left\|x-x_{0}\right\|^{2}+\frac{a^{2}}{2}\|y\|^{2}+a y^{\top} y^{\prime} \\
& =\frac{3}{2}\left\|y^{\prime}\right\|^{2}+\frac{3 \mu}{2}\|y\|^{2}+\frac{1}{2}\left(\left\|a y+y^{\prime}\right\|^{2}-\left\|y^{\prime}\right\|^{2}\right) \\
& =\left\|y^{\prime}\right\|^{2}+\frac{3 \mu}{2}\|y\|^{2}+\frac{1}{2}\left\|a y+y^{\prime}\right\|^{2} \geq 0 \\
& \geq \frac{3 \mu}{2}\|y\|^{2}=\frac{3 \mu}{2}\left\|x(t)-x_{*}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hem }\|x(t)-x \neq\|^{2} \leq \frac{2}{3 \mu} e(t) \\
& e(t)=3\left(\frac{1}{2}\left\|y^{\prime}\right\|^{2}+f(x)-f(x+1)\right)+\frac{a^{2}}{2}\|y\|^{2}+a y^{\top} y^{\prime} \\
& \text { use } x^{\prime}=y^{\prime}, x^{\prime \prime}=y^{\prime \prime} \\
& e^{\prime}(t)=3 y^{\prime} y^{\prime \prime}+3 \nabla f(x)^{\top} x^{\prime}+a^{2} y^{\top} y^{\prime}+a\left\|y^{\prime}\right\|^{2}+a y^{\top} y^{\prime \prime} \\
& =3 y^{\prime}(\underbrace{\left.y^{\prime \prime}+\nabla f(x)\right)}_{-a x^{\prime}=-a y^{\prime}}+a y^{\top}(\underbrace{y^{\prime \prime}+a y^{\prime}}_{-\nabla f(x)})+a\left\|y^{\prime}\right\|^{2} \\
& =-3 a\left\|y^{\prime}\right\|^{2}-a \nabla f(x)^{\top} y+a\| \|^{\prime} \|^{2^{\prime \prime}(t)=-\nabla f(x(t)),}
\end{aligned}
$$

$$
\begin{aligned}
& =-2 a\left\|y^{\prime}\right\|^{2}-a\left(\nabla f(x)-\frac{\left.\nabla f\left(x_{x}\right)\right)^{\top}\left(x-x_{*}\right)}{-0}\right. \\
& =0 \quad \begin{array}{l}
\text { strons } \\
\text { convextit }
\end{array} \\
& \geq \mu\left\|x-x_{0}\right\|^{2}=\mu\|y\|^{2} \\
& \leq-a\left(\mu\|y\|^{2}+2\left\|y^{\prime}\right\|^{2}\right) \\
& e^{\prime}(t) \leq \underbrace{-a\left(\mu\|y\|^{2}+2\left\|y^{\prime}\right\|^{2}\right)}_{\text {want } \leq-C a e(t)}
\end{aligned}
$$

Need upper bounl for $e(t)$

$$
a y^{\top} y^{\prime} \leq(a\|y\|)\left\|y^{\prime}\right\| \leq \frac{a^{2}}{2}\|y\|^{2}+\frac{1}{2}\left\|y^{\prime}\right\|^{2}
$$

Candy-Schanz $\quad a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2}$

$$
0 \leq(a-b)^{2}=a^{2}-2 a b+b^{2} \quad \hat{i}_{\text {caudy }} \text { \& twer }
$$

$$
f(x)-f\left(x_{*}\right) \leq \frac{\nabla f\left(x_{*}\right)}{=0}+\frac{L}{2}\left\|x-x_{*}\right\|^{2}
$$

If $L-$ rinschite

$$
\begin{aligned}
& f(x)-f\left(x_{+}\right) \leq \frac{c}{2}\|y\|^{2} \\
& e(t)=3\left(\frac{1}{2}\left\|y^{\prime}\right\|^{2}+f(x)-f\left(x_{+}\right)\right)+\frac{a^{2}}{2}\|y\|^{2}+a y^{\top} y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{3}{2}\left\|y^{\prime}\right\|^{2}+\frac{3 L}{2}\|y\|^{2}+\frac{a^{2}}{2}\|y\|^{2}+\frac{a^{2}}{2}\|y\|^{2}+\frac{1}{2}\left\|y^{\prime}\right\|^{2} \\
& =\left(\frac{3 L}{2}+a^{2}\right)\|y\|^{2}+2\left\|y^{\prime}\right\|^{2} \\
& =\underbrace{2 \mu}_{\geq 1 \text { since } \frac{3 L}{2 \mu} \geq \frac{L L}{\mu} \geq 1, ~, \mu \leq L}) \mu\|y\|^{2}+2\left\|y^{\prime}\right\|^{2} \\
& e(t) \leq\left(\frac{3 L+2 a^{2}}{2 \mu}\right)\left(\mu\|y\|^{2}+2\left\|y^{\prime}\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mu \frac{\|y\|^{2}+2\left\|y^{\prime}\right\|^{2}}{\mu} \frac{2 \mu e(t)}{3 L+2 a^{2}} \\
& e^{\prime}(t) \leq \frac{-a\left(\mu\|y\|^{2}+2\left\|y^{\prime}\right\|^{2}\right)}{3 L+2 a^{2}} e(t) \\
& \Longrightarrow e(t) \leq e(0) \exp \left(\frac{-2 \mu a t}{3 L+2 a^{2}}\right)
\end{aligned}
$$

$$
\|x(t)-x *\|^{2} \leq \frac{2}{3 \mu} e(t) \leq \frac{2}{3 \mu} e(2) \exp \left(\frac{-2 \mu a t}{3 L+2 a^{2}}\right)
$$

To complete the pout,

$$
\begin{aligned}
e(o) & \leq\left(\frac{3 L+2 a^{2}}{2 \mu}\right)\left(\underset{\mu\left\|x_{0}-x+\right\|^{2}}{\mu\| \|^{2}}+2\| \|^{2}\right) \\
& =\left(\frac{3 L+2 a^{2}}{2}\right)\left\|x_{0}-x_{+}\right\|^{2}
\end{aligned}
$$

Nesterov's Accelerated Gradient Descent

Set $\lambda_{0}=0$ and define λ_{k} by

$$
\begin{equation*}
\lambda_{k}=\frac{1+\sqrt{1+4 \lambda_{k-1}^{2}}}{2} . \tag{4}
\end{equation*}
$$

Nesterov's accelerated gradient descent method then corresponds to the iteration scheme

$$
\left\{\begin{array}{l}
y_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right) \tag{5}\\
x_{k+1}=y_{k+1}+\frac{\lambda_{k}-1}{\lambda_{k+1}}\left(y_{k+1}-y_{k}\right)
\end{array}\right.
$$

Theorem 2. Assume f is convex and ∇f is L-Lipschitz. If $\alpha \leq \frac{1}{L}$ then Nesterov's accelerated gradient descent satisfies

$$
\begin{equation*}
f\left(y_{t}\right)-f\left(x_{*}\right) \leq \frac{2\left\|x_{1}-x_{*}\right\|^{2}}{\alpha(t-1)^{2}} \tag{6}
\end{equation*}
$$

$O\left(\frac{1}{t}\right)$

Comparison

Proposition about λ_{k}
Proposition 3. For all $k \geq 1$ we have

$$
\begin{aligned}
& \begin{array}{l}
(7) \\
\lambda_{0}=0, \lambda_{1}=1 \\
\lambda_{k}=\frac{1+\sqrt{1+4 \lambda_{k-1}^{2}}}{2}
\end{array} \lambda_{k} \text { solves } \frac{\lambda_{k}^{2}-\lambda_{k} \leq \frac{k}{2}+\frac{1}{4}(3+\log (k)) .}{\lambda_{k}\left(\lambda_{k}-1\right)=\lambda_{k-1}^{2}} \\
& \rightarrow \lambda_{k}^{2} \geq \frac{1}{2}+\frac{1}{2} \sqrt{4 \lambda_{k-1}^{2}} \\
&=\frac{1}{2}+\lambda_{k-1} \xrightarrow{\text { induct- }} \lambda_{k} \geq \frac{k}{2}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{k} & \leq \frac{1+1+2 \lambda_{k-1}}{2} \sqrt{a^{2}+b^{2}} \leq a+b \\
& =1+\lambda_{k-1} \rightarrow \lambda_{k} \leq k
\end{aligned}
$$

For k larse, $\lambda_{k} \sim \frac{k}{2}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
y_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right) \\
x_{k+1}=y_{k+1}+\frac{\lambda_{k}-1}{\lambda_{k+1}}\left(y_{k+1}-y_{k}\right),
\end{array}\right. \\
& \frac{\lambda_{k}-1}{\lambda_{k+1}} \sim \frac{\frac{k}{2}-1}{\frac{k+1}{2}}=\frac{k-2}{k+1}
\end{aligned}
$$

Alterrative Nestw-

$$
x_{k+1}=\varphi_{k+1}+\left(\frac{k-2}{k+1}\right)\left(y_{k+1}-\varphi_{k}\right)
$$

Pront of convergu rate:

$$
\begin{aligned}
& f\left(y_{k+1}\right)=f\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)<\nabla f L-L_{1} \sin ^{2} \psi_{t} \\
& \leq f\left(x_{k}\right)+\nabla f\left(x_{k}\right) T \\
&=\left(-\alpha \nabla f\left(x_{k}\right)\right)+\frac{L}{2}\|-\alpha \nabla f\|^{2} \\
&=\alpha\left\|f\left(x_{k}\right)\right\|^{2}+\frac{L \alpha^{2}}{2}\left\|\nabla f\left(x_{k}\right)\right\|^{2}
\end{aligned}
$$

Assm $\alpha \leq \frac{1}{L}, \frac{L \alpha^{2}}{2} \leq \frac{\alpha}{2}$

$$
\begin{array}{r}
\leq f\left(x_{k}\right)-\frac{\alpha}{2}\left\|\frac{1}{\alpha}\left(y_{k+1}-x_{k}\right)\right\|^{2} \\
f\left(y_{k+1}\right)=f\left(x_{k}\right)-\frac{1}{2 \alpha}\left\|y_{k+1}-x_{k}\right\|^{2}
\end{array}
$$

Sine f is convex: $\quad \nabla f\left(x_{k}\right)=\frac{1}{\alpha}\left(x_{k}-y_{k+1}\right)$

$$
\begin{aligned}
f(y) & \geq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(y-x_{k}\right) \\
f\left(x_{k}\right) & \leq f(y)-\nabla f\left(x_{k}\right)^{\top}\left(y-x_{k}\right) \\
& =f(y)-\frac{1}{\alpha}\left(x_{k}-y_{k+1}\right)^{\top}\left(y-x_{k}\right) \\
& =f(y)-\frac{1}{\alpha}\left(y_{k+1}-x_{k}\right)^{\top}\left(x_{k}-y\right)
\end{aligned}
$$

for any $y \in \mathbb{R}^{n}$.

$$
\begin{gathered}
f\left(y_{k+1}\right)=f\left(x_{k}\right)-\frac{1}{2 \alpha}\left\|y_{k+1}-x_{k}\right\|^{2} \\
\leq f(y)-\frac{1}{2 \alpha}\left\|y_{k+1}-x_{k}\right\|^{2}-\frac{1}{\alpha}\left(y_{k+1}-x_{k}\right)^{\top}\left(x_{k}-y\right) \\
f\left(y_{k+1}\right)-f(y) \leq-\frac{1}{2 \alpha}\left(\left\|y_{k+1}-x_{k}\right\|^{2}+2\left(y_{k+1}-x_{k}\right)^{\top}\left(x_{k}-y\right)\right)
\end{gathered}
$$

Set $y=y_{k}$ and mull. By $\lambda_{k}-1$

$$
\left.\begin{array}{l}
(1) \\
\left(\lambda_{k}-1\right)
\end{array}\right)\left(f\left(y_{k+1}\right)-f\left(y_{k}\right)\right) \leq-\frac{\lambda_{k}^{-1}}{2 \alpha}\left(\left\|y_{k+1}-x_{k} /\right\|^{2}+2\left(y_{k+1}-x_{k}\right)^{\top}\left(x_{k}-y_{k}\right)\right)
$$

Set $y=x_{*}$
(2)

$$
f\left(y_{k+1}\right)-f\left(x_{*}\right) \leq-\frac{1}{2 \alpha}\left(\left\|y_{k+1}-x_{k}\right\|^{2}+\underline{2\left(y_{k+1}-x_{k}\right)^{\top}}\left(x_{k}-x_{k}\right)\right)
$$

We ald (1)+(2)

$$
\begin{aligned}
& \underline{\text { LHS }}= \lambda_{k} f\left(y_{k+1}\right)-\left(\lambda_{k}-1\right) f\left(y_{k}\right)-f\left(x_{*}\right) \\
&=\lambda_{k}\left(f\left(y_{k+1}\right)-f\left(x_{*+}\right)-\left(\lambda_{k}-1\right) f\left(y_{k}\right)-f\left(x_{*}\right)\right. \\
&+\lambda_{k} f\left(x_{*}\right) \\
&=\lambda_{k} \delta_{k+1}-\left(\lambda_{k}-1\right) \delta_{k} \\
& \delta_{k}=f\left(y_{k+1}\right)-f\left(x_{*}\right)
\end{aligned}
$$

RHS:

$$
\begin{aligned}
& -\frac{\lambda_{k}}{2 \alpha}\left\|y_{k+1}-x_{k}\right\|^{2}-\frac{1}{\alpha}\left(y_{k+1}-x_{k}\right)^{\top}\left(\left(\lambda_{k}-1\right)\left(x_{k}-y_{k}\right)+x_{k}-x_{\phi}\right) \\
& =\frac{\lambda_{k}}{2 \alpha}\left\|y_{k+1}-x_{k}\right\|^{2}-\frac{1}{\alpha}\left(y_{k+1}-x_{k}\right)^{\top}\left(\lambda_{k} x_{k}+\left(\lambda_{k}-1\right) y_{k}-x_{k}\right)
\end{aligned}
$$

Multiply LHS aw RHS by λ_{k}

$$
L H S=\lambda_{k}^{2} \delta_{k+1}-\underbrace{\lambda_{k}\left(\lambda_{k}-1\right)}_{\lambda_{k-1}^{2}} \delta_{k}
$$

$$
\begin{aligned}
& =\underbrace{\lambda_{k}^{2} \delta_{k+1}-\lambda_{k-1}^{2} \delta_{k}}_{\text {Telescopin }}, \quad \lambda_{k} \sim \frac{k}{2} \\
& \text { RHT }= \\
& -\frac{1}{2 \alpha}\left(\left\|\lambda_{k}\left(y_{k+1}-x_{k}\right)\right\|^{2}\right. \\
& \left.+2 \lambda_{k}\left(y_{k+1}-x_{k}\right)^{\top}\left(\lambda_{k} x_{k} \overline{(}\left(\lambda_{k}-1\right) y_{k}-x_{k}\right)\right) \\
& =-\frac{1}{2 \alpha}\left(\left\|\lambda_{k}\left(y_{k+1}-x_{k}\right)+\lambda_{k} x_{k}+\left(\lambda_{k}-1\right) y_{k}-x_{k}\right\|^{2}\right. \\
& \left.-\left\|\lambda_{k} x_{k} \bar{\oplus}\left(\lambda_{k}-1\right) y_{k}-x_{k}\right\|^{\alpha}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2 \alpha}\left(\left\|\lambda_{k} y_{k+1}+\left(\lambda_{k}-1\right) y_{k}-x_{*}\right\|^{2}\right. \\
& \begin{array}{l}
\left.-\left\|\lambda_{k} x_{k} \overline{\mathcal{P}}\left(\lambda_{k}-1\right) y_{k}-x_{k}\right\|^{\alpha}\right)
\end{array} \\
& =-\frac{1}{2 \alpha}\left(\left\|\left(\lambda_{k}-1\right)\left(y_{k+1}-y_{k}\right)+y_{k+1}-x_{*}\right\|^{2}\right. \\
& \left\{\begin{array}{l}
y_{k+1}=x_{k}-\alpha \nabla f\left(x_{k}\right) \\
x_{k+1}=y_{k+1}+\frac{\lambda_{k}-1}{\lambda_{k+1}}\left(y_{k+1}-y_{k}\right),
\end{array}\right. \\
& \left.-\left\|\lambda_{k} x_{k} \bar{\oplus}\left(\lambda_{k}-1\right) y_{k}-x_{k}\right\|^{\alpha}\right) \\
& \left(\lambda_{k}-1\right)\left(y_{k+1}-y_{k}\right)=\lambda_{k+1}\left(x_{k+1}-y_{k+1}\right) \\
& =-\frac{1}{2 \alpha}\left(\left\|\lambda_{k+1} x_{k+1}-\left(\lambda_{k+1}-1\right) y_{k+1}-x_{\neq}\right\|^{2}\right. \\
& \left.-\left\|\lambda_{k} x_{k} \overline{(+)}\left(\lambda_{k}-1\right) y_{k}-x_{k}\right\|^{\alpha}\right)
\end{aligned}
$$

Telescoping
Sum LHS \subseteq RHS our

$$
\begin{aligned}
& k=1 \text { to } t-1 \\
& \sum_{k=1}^{t-1} L H S=\lambda_{t-1}^{2} \delta_{t}=\lambda_{t-1}^{2}\left(f\left(y_{t}\right)-f\left(x_{*}\right)\right) \\
& \sum_{k=1}^{t=1} \text { RHS } \leq \frac{1}{2 \alpha}\left\|\lambda_{1} x_{1}-\left(\lambda_{1}-1\right) y_{1}-x_{*}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\frac{1}{2 \alpha}\left\|x_{1}-x_{*}\right\|^{2} \quad \lambda_{1}=1 \\
& \lambda_{t-1}^{2}\left(f\left(y_{t}\right)-f\left(x_{\phi}\right)\right) \leq \frac{\left\|x_{1}-x_{*}\right\|^{2}}{2 \alpha} \\
& \text { Use } \quad \lambda_{t-1} \geq \frac{t-1}{2} \\
& \Rightarrow
\end{aligned}
$$

$$
f\left(y_{t}\right)-f\left(x_{*}\right) \leq \frac{4\left\|x_{1}-x_{*}\right\|^{2}}{2 \alpha(t-1)^{2}}
$$

