Mathematics of Image and Data Analysis Math 5467

Newton's Method

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

Announcements

 $\bullet~{\rm HW2}$ due Feb25

Last time

• Gradient Descent

Today

• Newton's Method

Gradient Descent

Recall gradient descent

(1)
$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

has the minimizing movements interpretation:

Exercise 1. Fix x_k and define

(2)
$$T(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2\alpha} ||x - x_k||^2.$$

If we define x_{k+1} as the minimizer of T, show that

 $x_{k+1} = x_k - \alpha \nabla f(x_k).$

	
/	/

Second order Taylor expansion

We say $\nabla^2 f$ is *L*-Lipschitz if

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L \|x - y\|,$$

where $\nabla^2 f$ is the Hessian of f.

Theorem 2 (Second Order Taylor Expansion). Let $f : \mathbb{R}^n \to \mathbb{R}$ and assume $\nabla^2 f$ is L-Lipschitz. Then

(3)
$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x) + R$$

where

$$|R| \le \frac{L}{6} \|x - y\|^3.$$

 $(\nabla^2 f)_{ij} = \frac{\partial^2 f}{\partial x_{ij} \partial x_{ij}}$ nxn matrix Norm. For an uxn matrix A $||A|| = \max \{ ||Ax|| : x \in \mathbb{R}, ||x|| = |\}.$ Operator norm Note $||Ax|| = ||A\frac{x}{||x||}| \cdot ||x|| \leq ||A|| ||x||$ $\leq ||A||$

Assume A is symmetric. Then $\|A\mathbf{x}\| = \sqrt{\|A\mathbf{x}\|^2} = \sqrt{(A\mathbf{x})^T(A\mathbf{x})}$ $= \int x^T A^T A x$ $=\int_{X}TA^{2}X$ $max ||Ax|| = max \sqrt{x^T A^2 x}$ $||x||=1 ||x||=1 \sqrt{x^T A^2 x}$ $= \int \lambda_{max}(A^{z})$

Amox (A²) = largest ergenvalue A².

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x) + R$$
$$|R| \le \frac{L}{6} ||x - y||^3.$$

$$|R| \le \frac{L}{6} ||x - y||^3$$

g(t) = f(x + t(y-x))Define

 $g(1) = g(0) + \int g'(t) dt$ $= 9(0) + \int_{0}^{1} g'(0) + \int_{0}^{t} g''(s) ds dt$ $= g(n) + g'(n) + \int_{0}^{1} \int_{0}^{1} g''(s) ds dt$ $= g(0) + g'(0) + \int_0^1 \int_0^t g''(0) ds dt + R$ Where $R = \int_{0}^{1} \int_{0}^{1} \frac{1}{3} (s) - \frac{3}{5} (s) ds dt$

 $\int_{0}^{t} \int_{0}^{t} ds dt = \int_{0}^{t} t dt = \frac{1}{2}t^{2} \Big|_{0}^{2} = \frac{1}{2}$ $g(1) = g(2) + g'(2) + \frac{1}{2}g''(2) + R$ $f(x) \qquad f(x) \qquad$ $g'(t) = \nabla f(x + t(y-x))^T (y-x)$ $g''(t) = (y - x)^T \nabla^2 f(x + t(y - x))(y - x)$ T exercise chapter 2

 $R \leq \int_{0}^{1} \int_{0}^{1} f'(s) - f''(s) ds dt$

$$= \int_{0}^{1} \int_{0}^{t} |(Y-x)^{T} \nabla^{2} f(x+s(Y-x))(Y-x) - (Y-x)^{T} \nabla^{2} f(x)(Y-x)| ds dt$$

$$= \int_{0}^{1} \int_{0}^{t} \left[(y - x)^{T} \left(\nabla^{2} f(x + s(y - x))(y - x) - \nabla^{2} f(x)(y - x) \right) \right] dsdt$$

$$\begin{aligned} & (auchy - Schwarz \\ & \leq \int_{0}^{1} \int_{0}^{1} t \|y - x\| \|v^{2}f(x + s(y - x))(y - x) - v^{2}f(x)(y - x)\| dsdt \\ & = \int_{0}^{1} \int_{0}^{1} t \|y - x\| \| (v^{2}f(x + s(y - x)) - v^{2}f(x))(y - x)\| dsdt \end{aligned}$$

Spectral norm $\leq \int_{0}^{1} \int_{0}^{1} ||Y-x||^{2} ||\nabla^{2}f(x+s(Y-x)) - \nabla^{2}f(x)|| ds dt$ $L \int_{0}^{1} \int_{0}^{1} \frac{1}{12} \frac{1}{1$ $= L \||x-y||^{3} \int_{0}^{1} \int_{0}^{t} \int_{0}^{t$ ||x|| = ||-x||

$$f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x) + R$$

Newton's Method

Newton's method is based on minimizing a better (second order) approximation of f: We define

$$L(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

and choose x_{k+1} to minimize L. This yields

(4)
$$x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k).$$

 $\nabla L(x) = \nabla f(x_{k}) + \nabla^{2} f(x_{k})(x - x_{k}) = 0$ $\nabla^{2} f(x_{k})(x - x_{k}) = -\nabla f(x_{k})$ $x_{k-1} - x_{k} = -\left[\nabla^{2} f(x_{k})\right] \nabla f(x_{k})$

Convergence of Newton's Method

We assume that f is μ -strongly convex for $\mu > 0$. This implies that

(5)
$$\|\nabla^2 f(x)^{-1} y\| \leq \frac{1}{\mu} \|y\|,$$

for any $x, y \in \mathbb{R}^n.$
$$\|\nabla^2 f(x)^{-1} y\| \leq \frac{1}{\mu} \|y\|,$$

$$is less than \frac{1}{\mu}.$$

$$C = i \| \nabla^{2} f^{-1} \| \leq \frac{1}{\mu}$$
Second order Taylor expansion
$$F(Y) = \nabla f(x) + \nabla^{2} f(x) (Y-x) + R$$

$$R = \frac{1}{2} \| x - Y \|^{2} \| \nabla f(x) - \nabla^{2} f(y) \| \leq \frac{1}{2} \| x - Y \|^{2}$$

$$F(Y) = f(x) + \nabla f(x)^{-1} (Y-x) + R$$

Convergence of Newton's Method

Theorem 3. Let $f : \mathbb{R}^n \to \mathbb{R}$. Assume that f is μ -strongly convex, $\nabla^2 f$ is L-Lipschitz and

$$\mathcal{C}(\gamma) = \beta := \frac{L}{2\mu^2} \|\nabla f(x_0)\| < 1.$$

Then Newton's method converges as $k \to \infty$ to the unique minimizer of f, and furthermore for any $k \ge 0$ we have

(6)
$$\|\nabla f(x_k)\| \le \frac{2\mu^2}{L}\beta^{2^k}.$$

Proof: Defin
$$e(\mathbf{F}) = \frac{L}{2\mu^2} \|\nabla f(x_{\mathbf{F}})\|$$

Claim: $e(\mathbf{F}) \leq e(\mathbf{F})^2 \quad (Qoodvatric)$
Newton $x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k).$

 $\nabla^2 f(x_k)^{-} \nabla f(x_k) = X_k - X_{k+1}$

 $\nabla f(x_k) = \nabla^2 f(x_k) (x_k - x_{k+1})$

 $\mathcal{D}f(x_k) + \mathcal{D}^2f(x_k)(x_{k+1} - x_k) = 0$

 $\mathcal{C}(k+1) = \frac{\mathcal{L}}{2\mu^2} \| \nabla f(x_{k+1}) \|$

 $= \frac{L}{2\mu^2} \left\| \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k) - \nabla^2 f(\mathbf{x}_k) (\mathbf{x}_{k+1} - \mathbf{x}_k) \right\|$

 $\nabla f(Y) = \nabla f(x) + \nabla f(x)(Y-x) + R$ Y = X k + 1, X = X k $||F|| \leq \leq ||X - Y||^2$ Taylor Expansion $e(k+1) \leq \frac{L}{2\mu^2} \cdot \frac{L}{2} || X_{k+1} - X_k ||^2$ Newton's method. $= \frac{L^2}{4\mu^2} || \nabla^2 f(x_E)^{\dagger} \nabla f(x_E) ||^2$ $\lim_{t \to t} \frac{1}{2} \int \frac{L^2}{4\mu^2} \left(\frac{1}{\mu} || \nabla f(x_E) ||^2 \right)^2$ $\lim_{t \to t} \frac{L^2}{4\mu^2} \left(\frac{1}{\mu} || \nabla f(x_E) ||^2 \right)^2$

 $= \frac{L^{a}}{4\mu^{4}} \|\nabla f(xk)\|^{2} = \mathcal{C}(k)^{2} \mathbb{R}$

Newton Notebook (.ipynb)