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Last time
• The Fast Fourier Transform (FFT)

Today
• Parseval’s identities

• Convolution and the DFT



Recall
Definition 1. The Discrete Fourier Transform (DFT) is the mapping D : L2(Zn) !
L
2(Zn) defined by

Df(`) =
n�1X

k=0

f(k)!�k` =
n�1X

k=0

f(k)e�2⇡ik`/n
,

where ! = e
2⇡i/n

and Zn = {0, 1, . . . , n� 1} is the cyclic group Zn = Z/n.

The DFT can be viewed as a change of basis into the orthogonal basis functions

u`(k) = !
k` = e

2⇡ik`/n

for ` = 0, 1, . . . , n� 1.



Inverse Fourier Transform
Theorem 2 (Fourier Inversion Theorem). For any f 2 L

2(Zn) we have

(1) f(k) =
1

n

n�1X

`=0

Df(`)!k` =
1

n

n�1X

`=0

Df(`)e2⇡ik`/n.

Definition 3 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier
Transform (IDFT) is the mapping D�1 : L2(Zn) ! L

2(Zn) defined by

D�1
f(`) =

1

n

n�1X

k=0

f(k)!k` =
1

n

n�1X

k=0

f(k)e2⇡ik`/n.



Adjoint of D
We first show that D�1

is the adjoint of D, up to the factor 1/n.

Lemma 4. For each f, g 2 L
2(Zn) we have

1

n
hDf, gi = hf,D�1

gi.







Parseval’s identities
An immediate consequence of the adjoint lemma is Parseval’s identities.

Theorem 5 (Parseval’s Identities). Let f, g 2 L
2(Zn). Then it holds that

(i) hf, gi = 1
n hDf,Dgi, and

(ii) kfk2 = 1
nkDfk2.











Parseval’s identities
Remark 6. Of course, a similar statement holds for the inverse transform D�1

.

Indeed, Lemma 4 and Theorem 2 imply

1

n
hf, gi = 1

n
hDD�1

f, gi = hD�1
f,D�1

gi.

Setting f = g yields
1
nkfk

2 = kD�1
fk2.



Convolution
Definition 7. The discrete cyclic convolution of f, g 2 L

2(Zn), denoted f ⇤g, is the

function in L
2(Zn) defined for each k by

(f ⇤ g)(k) =
n�1X

j=0

f(j)g(k � j).

We note that the definition of the convolution makes use of the fact that Zn is a

cyclic group when k� j falls outside of 0, 1, . . . , n� 1 (i.e., the values wrap around).

We leave some basic properties of the convolution to an exercise.

Exercise 8. Let f, g, h 2 L
2(Zn). Show that the following hold.

(i) f ⇤ g = g ⇤ f ;

(ii) f ⇤ (g ⇤ h) = (f ⇤ g) ⇤ h;

(iii) f ⇤ (g + h) = f ⇤ g + f ⇤ h.
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Convolution and the DFT
Lemma 9 (Convolution and the DFT). For f, g 2 L

2(Zn) we have

(2) D(f ⇤ g) = Df · Dg.

Remark 10. Lemma 9 is the most important property of the DFT, that it turns

convolution into multiplication. It allows us to compute convolutions with the FFT

in O(n log n) operations as

f ⇤ g = D�1(Df · Dg).

Computing convolution the ordinary way takes O(n2) operations:

(f ⇤ g)(k) =
n�1X

j=0

f(j)g(k � j).

The convolution property is also what allows the FFT to be used for solving PDEs

numerically (all discrete derivatives are convolutions).











Exercise on discrete derivatives
Exercise 11. Discrete derivatives (difference quotients) can be interpreted as con-

volutions. Complete the following exercises.

(i) For f 2 L
2(Zn) define the backward difference

r�
f(k) = f(k)� f(k � 1).

Find g 2 L
2(Zn) so that r�

f = f ⇤ g and use this with Lemma 9 to show that

D(r�
f)(k) = (1� !

�k)Df(k), where ! = e
2⇡i/n

.

(ii) For f 2 L
2(Zn) define the forward difference

r+
f(k) = f(k + 1)� f(k).

Find g 2 L
2(Zn) so that r+

f = f ⇤ g and use this with Lemma 9 to show that

D(r+
f)(k) = (!k � 1)Df(k).



(iii) For f 2 L
2(Zn) define the centered difference by

rf(k) =
1

2
(r�

f(k) +r+
f(k)) =

1

2
(f(k + 1)� f(k � 1)).

Use parts (i) and (ii) to show that

D(rf)(k) =
1

2
(!k � !

�k)Df(k) = i sin(2⇡k/n)Df(k).

(iv) For f 2 L
2(Zn), define the discrete Laplacian as

�f(k) = r+
f(k)�r�

f(k) = f(k + 1)� 2f(k) + f(k � 1).

Use parts (i) and (ii) to show that

D(�f)(k) = (!k + !
�k � 2)Df(k) = 2(cos(2⇡k/n)� 1)Df(k). 4






