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Last time
• Diagonalization and Vector Calculus

• Introduction to Numpy and reading/writing images in Python.

Today
• Principal Component analysis (PCA)



Recall
Let v1, . . . , vk be orthonormal vectors in Rn and set

L = span{v1, v2, . . . , vk},

and
V =

⇥
v1 v2 . . . vk

⇤
.

Then we have

• ProjLx = V V Tx

• kProjLxk2 =
Pk

i=1(x
T vi)2

• kxk2 = kProjLxk2 + kx� ProjLxk2

Given x0 2 Rn, projection onto an affine space A = x0 + L is given by

ProjAx = x0 + ProjL(x� x0).

Also, for a symmetric matrix A

rkAxk2 = 2A2x.



Principal Component Analysis (PCA)
Given points x1, x2, . . . , xm in Rn, find the k-dimensional linear or affine subspace
that “best fits” the data in the mean-squared sense. That is, we seek an affine
subspace A = x0 + L that minimizes the energy

E(x0, L) =
mX

i=1

kxi � ProjAxik2.



Optimizing over x0

Claim: For any L, the function x0 7! E(x0, L) is minimized by the centroid

x0 =
1

m

mX

i=1

xi.











Reduction to fitting a linear subspace
Since the centroid is optimal, we can center the data (replace xi by xi � x0), and
reduce to the problem of finding the optimal linear subspace L. Thus, we can
consider the problem

min
L

E(L) =
mX

i=1

kxi � ProjLxik2,

where the minL is over k-dimensional linear subspaces L. We can write

L = span{v1, v2, . . . , vk},

and treat the problem as optimizing over the orthonormal basis v1, v2, . . . , vk of L.



The covariance matrix
Lemma 1. The energy E(L) can be expressed as

(1) E(L) = Trace(M)�
kX

j=1

vTj Mvj ,

where M is the covariance matrix of the data, given by

(2) M =
mX

i=1

xix
T
i .

Note: We can write M = XTX, where X =
⇥
x1 x2 · · · xm

⇤T .













Covariance Matrix
The covariance matrix

M =
mX

i=1

xix
T
i = XTX

is a positive semi-definite (i.e., vTMv � 0) and symmetric matrix. Indeed, for a
unit vector v we have

vTMv =
mX

i=1

vTxix
T
i v =

mX

i=1

(xT
i v)

2 � 0,

which is exactly the amount of variation in the data in the direction of v.

If v is an eigenvector with eigenvalue �, then Mv = �v and

� = vTMv = Variation in direction v.



Covariance Matrix
Since the covariance matrix M is symmetric, it can be diagonalized:

M = PDPT

where D = diag(�1,�2, . . . ,�n) and

P =
⇥
p1 p2 · · · pn

⇤
.

We choose �1 � �2 � · · · � �n, and note that p1, p2, . . . , pn are orthonormal eigen-
vectors of M , so

Mpi = �ipi.



Principal Component Analysis (PCA)
Theorem 2. The energy E(L) is minimized over k-dimensional linear subspaces
L ⇢ Rn by setting

L = span{p1, p2, . . . , pk}

and the optimal energy is given by

E(L) =
nX

i=k+1

�i.

Note: The pi are called the principal components of the data, and the �i are the
principal values. The prinipal components are the directions of highest variation in
the data.













PCA for dimension reduction
The steps for dimension reduction to Rk are outlined below. We assume we are
given an m⇥ n data matrix X

1. Compute the PCA covariance matrix M = XTX, with the option of centering
X first.

2. Compute the top k eigenvectors of M , and store them in a matrix P of size
n⇥ k.

3. Compute the PCA dimension reduced dataset B = XP .



Example on MNIST

(a) 0 (b) 0,1 (c) 0,1,2

(d) 0,1,2,3 (e) 0,1,2,3,4 (f) 0,1,2,3,4,5



How many principal directions?
If we wish to capture ↵ 2 [0, 1] fraction of the total variation in the data, we can
choose k so that

kX

i=1

�i � ↵Trace(M).







Intro to PCA Notebook: (.ipynb)

https://colab.research.google.com/drive/1TO2Cx3eY5L-z3cazd2E7yrq-q_cJUuun?usp=sharing

