Mathematics of Image and Data Analysis Math 5467

Principal Component Analysis

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

Last time

- Diagonalization and Vector Calculus
- Introduction to Numpy and reading/writing images in Python.

Today

• Principal Component analysis (PCA)

Recall

Let v_1, \ldots, v_k be orthonormal vectors in \mathbb{R}^n and set

$$L = \operatorname{span}\{v_1, v_2, \dots, v_k\},$$
$$V = \begin{bmatrix} v_1 & v_2 & \dots & v_k \end{bmatrix}.$$

and

Then we have

• $\operatorname{Proj}_L x = V V^T x$

•
$$\|\operatorname{Proj}_L x\|^2 = \sum_{i=1}^k (x^T v_i)^2$$

•
$$||x||^2 = ||\operatorname{Proj}_L x||^2 + ||x - \operatorname{Proj}_L x||^2$$

Given $x_0 \in \mathbb{R}^n$, projection onto an affine space $A = x_0 + L$ is given by

$$\operatorname{Proj}_A x = x_0 + \operatorname{Proj}_L(x - x_0).$$

 $\nabla \|Ax\|^2 = 2A^2x.$

Also, for a symmetric matrix A

Principal Component Analysis (PCA)

Given points x_1, x_2, \ldots, x_m in \mathbb{R}^n , find the k-dimensional linear or affine subspace that "best fits" the data in the mean-squared sense. That is, we seek an affine subspace $A = x_0 + L$ that minimizes the energy

Optimizing over x_0 $P_{A} = x_5 + P_{A} (x - x_5)$

Claim: For any L, the function $x_0 \mapsto E(x_0, L)$ is minimized by the centroid

$$x_0 = \frac{1}{m} \sum_{i=1}^m x_i.$$

$$\begin{aligned} \Pr{of} : E(x_{0}, L) &= \sum_{i=1}^{m} ||x_{i} - \Pr{o}_{A}x_{i}||^{2} \\ &= \sum_{i=1}^{m} ||x_{i} - x_{0} - \Pr{o}_{L}(x_{i} - x_{0})||^{2} \\ &= \sum_{i=1}^{m} ||x_{i} - x_{0} - \nabla\nablaT(x_{i} - x_{0})||^{2} \\ &= \sum_{i=1}^{m} ||x_{i} - x_{0} - \nabla\nablaT(x_{i} - x_{0})||^{2} \end{aligned}$$

residual sperator $R = I - V V^T$

 $E(x_{2}, L) = \sum_{i=1}^{m} ||R(x_{i}-x_{2})||^{2}$

 $D = \nabla_{x} E(x_{1}, c) = \sum_{i=1}^{m} \nabla \| \mathbb{R}(x_{i} - x_{2}) \|^{2}$ $= -\sum_{i=1}^{m} \partial R^2(x_i - x_5)$ $R^2 = R_{-}$ $(I-vvT)^{2} = I-vvT$ $(Z-vvT)^{2} = I-vvT$ $\sum_{i=1}^{n} R(x_{i}-x_{i}) = O$

Ry=0, $y=\sum_{i=1}^{\infty}(x_i-x_i)$ iff yEL=span(V) (I - vvT)y = 0Choice y = 0 $0 = \sum_{i=1}^{m} (x_i - x_p)$ Y = VVTy $\sum_{i=1}^{m} x_{i} = \sum_{i=1}^{m} x_{i} = m x_{i}$ $1 \sum_{i=1}^{m} x_i = x_0$

If yel, y=0, hen $Y = \sum_{i=1}^{m} (x_i - x_s) = \sum_{i=1}^{m} x_i - m x_s$ $X_{5} = \pm \sum_{m=1}^{\infty} x_{i} - Y$ Centrord +L $E(x_{0},L) = \sum_{i=1}^{m} \|x_{i} - p_{i} - x_{i}\|^{2}$ $= \sum_{i=1}^{m} \|x_i - x_i - p_{i}(x_i - x_i)\|^2$

Define Yi = Xi - Xo (centering data)

 $E(x_{2},L) = \sum_{i=1}^{m} ||Y_{i} - P^{2}y_{i}||^{2}$

Reduction to fitting a linear subspace

Since the centroid is optimal, we can center the data (replace x_i by $x_i - x_0$), and reduce to the problem of finding the optimal linear subspace L. Thus, we can consider the problem

$$\min_{L} E(L) = \sum_{i=1}^{m} \|x_i - \operatorname{Proj}_{L} x_i\|^2,$$

where the \min_{L} is over k-dimensional linear subspaces L. We can write

$$L = \operatorname{span}\{v_1, v_2, \dots, v_k\},\$$

and treat the problem as optimizing over the orthonormal basis v_1, v_2, \ldots, v_k of L.

The covariance matrix

Lemma 1. The energy E(L) can be expressed as

(1)
$$E(L) = \operatorname{Trace}(M) - \sum_{j=1}^{k} v_j^T M v_j,$$

where M is the covariance matrix of the data, given by

(2)
$$M = \sum_{i=1}^{m} x_i x_i^T$$

. .

Note: We can write $M = X^T X$, where $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_m \end{bmatrix}^T$.

$$\begin{aligned} & \text{Proof:} \\ & \text{E(L)} = \sum_{i=1}^{m} \|x_i - \text{Projexil}^2 \\ & = \sum_{i=1}^{m} (\|x_i\|^2 - \|\text{Projexil}^2) \end{aligned}$$

 $= \sum_{i=1}^{m} \|x_i\|^2 - \sum_{i=1}^{m} \|p_{i} - p_{i} - p_{i} - p_{i} \|p_{i} - p_{i} - p_{i} \|p_{i} \|p_{i} - p_{i} \|p_{i} \|p$ $trace(xx^{T}) = trace(\begin{array}{c} X(\iota)^{2} & X(\iota)X(2) & \cdots & X(\iota)X(n) \\ X(\iota)X(n) & X(2)^{2} & \vdots \\ \vdots & \vdots & \vdots \\ X(n)X(\iota) & \cdots & X(n)^{2} \end{array}\right)$ Note: $= ||x||^2$ First tor $\sum_{i=1}^{m} ||x_i||^2 = \sum_{i=1}^{m} \operatorname{Trace}(x_i x_i^T)$ = Trave $\left(\sum_{i=1}^{m} X_i X_i^T\right)$ = Trave (M)second term

 $\sum_{i=1}^{\infty} \|p_{i} f_{i} x_{i}\|^{2} = \sum_{i=1}^{\infty} \sum_{j=1}^{k} (x_{i} T v_{j})^{2}$ $=\sum_{j=1}^{k}\sum_{i=1}^{m} (x_i^{T}v_j) (v_j^{T}x_i)$ $= \sum_{j=1}^{k} \sum_{i=1}^{m} v_j^{T}(x_i x_i^{T}) v_j$ $= \sum_{j=1}^{k} V_{j}^{T} \left(\sum_{i=1}^{m} x_{i} x_{i}^{T} \right) V_{j}$ $= \sum_{j=1}^{k} v_j^T M v_j$

Covariance Matrix

The covariance matrix

$$M = \sum_{i=1}^{m} x_i x_i^T = X^T X$$

 $M^{T} = (X^{T}X)^{T} = X^{T}X$

is a positive semi-definite (i.e., $v^T M v \ge 0$) and symmetric matrix. Indeed, for a unit vector v we have

$$v^T M v = \sum_{i=1}^m v^T x_i x_i^T v = \sum_{i=1}^m (x_i^T v)^2 \ge 0,$$

which is exactly the amount of *variation* in the data in the direction of v.

If v is an eigenvector with eigenvalue λ , then $Mv = \lambda v$ and

Covariance Matrix

Since the covariance matrix M is symmetric, it can be diagonalized:

 $M = PDP^T$

where $D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and

$$P = \begin{bmatrix} p_1 & p_2 & \cdots & p_n \end{bmatrix}.$$

We choose $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and note that p_1, p_2, \ldots, p_n are orthonormal eigenvectors of M, so

$$Mp_i = \lambda_i p_i.$$

Principal Component Analysis (PCA)

Theorem 2. The energy E(L) is minimized over k-dimensional linear subspaces $L \subset \mathbb{R}^n$ by setting

 $L = span\{p_1, p_2, \ldots, p_k\}$

Note: The p_i are called the *principal components* of the data, and the λ_i are the principal values. The principal components are the directions of highest variation in the data.

*

Proof: We can consider maximizing

$$A = \sum_{j=1}^{k} v_j^T M v_j \quad \text{over } v_1, v_2, \dots, v_k$$

 $A = \sum_{j=1}^{k} v_{j}^{T} P D P^{T} v_{j}^{T}$ $= \sum_{j=1}^{k} (v_j^T P D'') (D'' P^T v_j)$ $= \sum_{j=1}^{k} (D'^{\prime} p^{T} v_{j})^{T} (D'^{\prime} p^{T} v_{j})$ $= \sum_{j=1}^{k} \| \mathbf{b}^{\prime \prime} \mathbf{p}^{T} \mathbf{v}_{j} \|^{2}$ $D'n pT_{j} = \begin{pmatrix} \lambda''_{1} & \gamma_{1} & \gamma_{2} \\ \lambda_{1} & \gamma_{2} & \gamma_{3} \\ 0 & \ddots & \gamma_{n} \\ 0 & \ddots & \lambda_{n} \end{pmatrix} \begin{pmatrix} P_{i}' \\ P_{i} \\ P_{i} \\ P_{i} \end{pmatrix} V_{j}$

 $= \begin{pmatrix} \lambda_{1}^{\prime n} & \lambda_{2}^{\prime n} & 0 \\ \lambda_{1}^{\prime n} & \lambda_{2}^{\prime n} \end{pmatrix} \begin{pmatrix} P_{1}^{\prime} V_{3} \\ P_{1}^{\prime} V_{3}^{\prime} \\ P_{1}^{\prime} V_{3}^{\prime} \\ P_{1}^{\prime} V_{3}^{\prime} \\ P_{1}^{\prime} V_{3}^{\prime} \end{pmatrix}$ $= \left[\lambda_{i}^{\prime} P_{i}^{T} v_{j} \right] \cdots \left[\lambda_{n}^{\prime} P_{n}^{T} v_{j} \right]^{7}$ $\|D^{\prime n}P^{T}v_{j}\|^{2} = \sum_{i=1}^{n} (\lambda_{i}^{\prime n}P_{i}^{T}v_{j})^{2} = \sum_{i=1}^{n} \lambda_{i}(P_{i}^{T}v_{j})^{2}$ $\sum_{j=1}^{k} v_j^T M v_j = \sum_{j=1}^{k} \sum_{i=1}^{\infty} \lambda_i (p_i^T v_j)^2$

 $= \sum_{i=1}^{\infty} \lambda_i \sum_{j=1}^{2} (P_i^T V_j)^2$ = Ilpris Pilla $= \sum_{i=1}^{n} a_i \lambda_i, a_i = \|p_{\mathcal{T}} p_i\|^2$ $0 \leq a_i \leq 1$ $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} \sum_{j=1}^{k} (p_i^T v_j)^2$ $= \sum_{j=1}^{k} \sum_{i=1}^{k} (p_i^T v_j)^2 = K$

 $\frac{\# W \# 6}{\overline{\sum}_{i=1}^{\infty} a_i \lambda_i} \leq \frac{\cancel{\sum}_{i=1}^{\infty} \lambda_i}{\overline{\sum}_{i=1}^{\infty} \lambda_i}$ Choice of $V_1 = P_1, V_2 = P_2, \dots, V_k = P_k$ gives $a_i = \|P^{i}j_LP_i\|^2 = \|P_i\|^2 = 1$ for i EK. It isk then PilPs, jek

5. ai=0 for i>k.

Since $\hat{\sum}_{i=1}^{k} a_i \lambda_i = \sum_{i=1}^{k} \lambda_i$, this Chriter is aptimel.

PCA for dimension reduction

The steps for dimension reduction to \mathbb{R}^k are outlined below. We assume we are given an $m\times n$ data matrix X

- 1. Compute the PCA covariance matrix $M = X^T X$, with the option of centering X first.
- 2. Compute the top k eigenvectors of M, and store them in a matrix P of size $n \times k$.
- 3. Compute the PCA dimension reduced dataset B = XP. $\mathcal{E}\mathcal{R}$

$$B = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_m^T \end{pmatrix} \begin{bmatrix} p_1 & p_2 & \cdots & p_k \end{bmatrix}$$

Example on MNIST

How many principal directions?

If we wish to capture $\alpha \in [0, 1]$ fraction of the total variation in the data, we can choose k so that

$$\sum_{i=1}^{k} \lambda_i \ge \alpha \operatorname{Trace}(M). \quad = \quad \bigwedge \quad \sum_{i=1}^{k} \Lambda_i$$

Intro to PCA Notebook: (.ipynb)