Mathematics of Image and Data Analysis Math 5467

Principal Component Analysis

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

Last time

- Diagonalization and Vector Calculus
- Introduction to Numpy and reading/writing images in Python.

Today

- Principal Component analysis (PCA)

Recall

Let v_{1}, \ldots, v_{k} be orthonormal vectors in \mathbb{R}^{n} and set
and

$$
\begin{aligned}
& L=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}, \\
& V=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{k}
\end{array}\right]
\end{aligned}
$$

Then we have

- $\operatorname{Proj}_{L} x=V V^{T} x$
- $\left\|\operatorname{Proj}_{L} x\right\|^{2}=\sum_{i=1}^{k}\left(x^{T} v_{i}\right)^{2}$
- $\|x\|^{2}=\left\|\operatorname{Proj}_{L} x\right\|^{2}+\left\|x-\operatorname{Proj}_{L} x\right\|^{2}$

Given $x_{0} \in \mathbb{R}^{n}$, projection onto an affine space $A=x_{0}+L$ is given by

$$
\operatorname{Proj}_{A} x=x_{0}+\operatorname{Proj}_{L}\left(x-x_{0}\right)
$$

Also, for a symmetric matrix A

$$
\nabla\|A x\|^{2}=2 A^{2} x
$$

Principal Component Analysis (PCA)

Given points $x_{1}, x_{2}, \ldots, x_{m}$ in \mathbb{R}^{n}, find the k-dimensional linear or affine subspace that "best fits" the data in the mean-squared sense. That is, we seek an affine subspace $A=x_{0}+L$ that minimizes the energy

Optimizing over $x_{0} \quad$ Prij $_{A} x=x_{0}+p r j_{L}\left(x-x_{0}\right)$
Claim: For any L, the function $x_{0} \mapsto E\left(x_{0}, L\right)$ is minimized by the centroid

$$
x_{0}=\frac{1}{m} \sum_{i=1}^{m} x_{i} .
$$

Prof: : $E\left(x_{0}, l\right)=\sum_{i=1}^{m} \| x_{i}-P\left(j_{A} x_{i} \|^{2}\right.$

$$
\begin{aligned}
\operatorname{pr}\left(j_{x} x=V^{\top} x\right. & =\sum_{i=1}^{i=1}\left\|x_{i}-x_{0}-\operatorname{prj}\left(x_{i}-x_{0}\right)\right\|^{2} \\
& =\sum_{i=1}^{m}\left\|x_{i}-x_{s}-V V^{\top}\left(x_{i}-x_{0}\right)\right\|^{2} \\
& =\sum_{i=1}^{m}\left\|\left(I-V V^{\top}\right)\left(x_{i}-x_{0}\right)\right\|^{2}
\end{aligned}
$$

residual operator

$$
R=I-V V^{\top}
$$

$$
\begin{gathered}
E\left(x_{0}, L\right)=\sum_{i=1}^{m}\left\|R\left(x_{i}-x_{0}\right)\right\|^{2} \\
D=\nabla_{x_{0}} E\left(x_{0}, L\right)=\sum_{i=1}^{m} \nabla\left\|R\left(x_{i}-x_{0}\right)\right\|^{2} \\
=-\sum_{i=1}^{m} 2 R^{2}\left(x_{i}-x_{0}\right) \\
R^{2}=R \\
\left(I-V V^{\top}\right)^{2}=I-V V^{\top} \xrightarrow{\longrightarrow} R\left(x_{i}-x_{0}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& R y=0, \quad y=\sum_{i=1}^{m}\left(x_{i}-x_{0}\right) \\
& \left(I-v v^{\top}\right) y=0 \\
& \downarrow \quad \text { iff } y \in L=\operatorname{span}(v) \\
& y=v v^{\top} y \quad \begin{array}{l}
\text { Choice } y=0 \\
0=\sum_{i=1}^{m}\left(x_{i}-x_{0}\right) \\
\sum_{i=1}^{m} x_{i}=\sum_{i=1}^{m} x_{0}=m x_{0} \\
\frac{1}{m} \sum_{i=1}^{m} x_{i}=x_{0}
\end{array}
\end{aligned}
$$

If $y \in L, y \neq 0$, then

$$
\begin{gathered}
y=\sum_{i=1}^{m}\left(x_{i}-x_{0}\right)=\sum_{i=1}^{m} x_{i}-m x_{0} \\
x_{0}=\underbrace{\frac{1}{m} \sum_{i=1}^{m} x_{i}}_{\text {centroid }}-y
\end{gathered}
$$

$$
\begin{aligned}
E\left(x_{0}, l\right) & =\sum_{i=1}^{m}\left\|x_{i}-\operatorname{pr} j_{A} x_{i}\right\|^{2} \\
& =\sum_{i=1}^{m}\left\|x_{i}-x_{0}-\operatorname{pr} j_{L}\left(x_{i}-x_{0}\right)\right\|^{2}
\end{aligned}
$$

Define $y_{i}=x_{i}-x_{0} \quad$ (centering data)

$$
E\left(x_{2}, l\right)=\sum_{i=1}^{m}\left\|y_{i}-p r j_{L} y_{i}\right\|^{2}
$$

Reduction to fitting a linear subspace

Since the centroid is optimal, we can center the data (replace x_{i} by $x_{i}-x_{0}$), and reduce to the problem of finding the optimal linear subspace L. Thus, we can consider the problem

$$
\min _{L} E(L)=\sum_{i=1}^{m}\left\|x_{i}-\operatorname{Proj}_{L} x_{i}\right\|^{2}
$$

where the $\min _{L}$ is over k-dimensional linear subspaces L. We can write

$$
L=\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}
$$

and treat the problem as optimizing over the orthonormal basis $v_{1}, v_{2}, \ldots, v_{k}$ of L.

The covariance matrix
Lemma 1. The energy $E(L)$ can be expressed as

$$
\begin{equation*}
E(L)=\operatorname{Trace}(M)-\sum_{j=1}^{k} v_{j}^{T} M v_{j} \tag{1}
\end{equation*}
$$

where M is the covariance matrix of the data, given by

$$
\begin{equation*}
M=\sum_{i=1}^{m} x_{i} x_{i}^{T} \tag{2}
\end{equation*}
$$

Note: We can write $M=X^{T} X$, where $X=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{m}\end{array}\right]^{T}$.
Proof:

$$
\begin{aligned}
E(L) & =\sum_{i=1}^{m}\left\|x_{i}-p r i j x_{i}\right\|^{2} \\
& =\sum_{i=1}^{n}\left(\left\|x_{i}\right\|^{2}-\left\|p r_{j l} x_{i}\right\|^{2}\right)
\end{aligned}
$$

$$
=\sum_{i=1}^{m}\left\|x_{i}\right\|^{2}-\sum_{i=1}^{m}\left\|p-j x_{i}\right\|^{2}
$$

$$
=\|x\|^{2}
$$

Fist tow

$$
\begin{aligned}
\sum_{i=1}^{m}\left\|x_{i}\right\|^{2} & =\sum_{i=1}^{m} \operatorname{Trace}\left(x_{i} x_{i}^{\top}\right) \\
& =\operatorname{Trace}\left(\sum_{i=1}^{m} x_{i} x_{i}^{\top}\right)=\operatorname{Trace}(M)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i=1}^{m}\left\|p r_{j L} x_{i}\right\|^{2} & =\sum_{i=1}^{m} \sum_{j=1}^{k}\left(x_{i}^{\top} v_{j}\right)^{2} \\
& =\sum_{j=1}^{k} \sum_{i=1}^{m}\left(x_{i}^{\top} v_{j}\right)\left(v_{j}^{\top} x_{i}\right) \\
& =\sum_{j=1}^{k} \sum_{i=1}^{m} v_{j}^{\top}\left(x_{i} x_{i}^{\top}\right) v_{j} \\
& =\sum_{j=1}^{k} v_{j}^{\top}\left(\sum_{i=1}^{m} x_{i} x_{i}^{\top}\right) v_{j} \\
& =\sum_{j=1}^{k} v_{j}^{\top} \mu v_{j} \quad \text { VIU\| }
\end{aligned}
$$

Covariance Matrix
The covariance matrix

$$
M^{\top}=\left(x^{\top} x\right)^{\top}=x^{\top} x
$$

$$
M=\sum_{i=1}^{m} x_{i} x_{i}^{T}=X^{T} X
$$

is a positive semi-definite (i.e., $v^{T} M v \geq 0$) and symmetric matrix. Indeed, for a unit vector v we have

$$
v^{T} M v=\sum_{i=1}^{m} v^{T} x_{i} x_{i}^{T} v=\sum_{i=1}^{m}\left(x_{i}^{T} v\right)^{2} \geq 0
$$

which is exactly the amount of variation in the data in the direction of v.
If v is an eigenvector with eigenvalue λ, then $M v=\lambda v$ and

$$
\begin{gathered}
\lambda=v^{T} M v=\text { Variation in direction } v . \\
v^{\top} M v=v^{\top} \lambda v=\lambda v^{\top} v=\lambda \underbrace{\|v v\|^{2}}_{=}
\end{gathered}
$$

Covariance Matrix

Since the covariance matrix M is symmetric, it can be diagonalized:
where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and

$$
P=\left[\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{n}
\end{array}\right] .
$$

We choose $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, and note that $p_{1}, p_{2}, \ldots, p_{n}$ are orthonormal eigenvectors of M, so

$$
M p_{i}=\lambda_{i} p_{i} .
$$

Principal Component Analysis (PCA)
Theorem 2. The energy $E(L)$ is minimized over k-dimensional linear subspaces $L \subset \mathbb{R}^{n}$ by setting

$$
L=\operatorname{span}\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}
$$

and the optimal energy is given by

$$
E(L)=\sum_{i=k+1}^{n} \lambda_{i} \text {. } \quad \text { amount of }
$$

Note: The p_{i} are called the principal components of the data, and the λ_{i} are the principal values. The prinipal components are the directions of highest variation in the data.
Proof: We can consider maximizing

$$
A=\sum_{j=1}^{k} v_{j}^{\top} M v_{j} \quad \text { over } v_{1}, v_{2}, \ldots, v_{k}
$$

$$
\begin{aligned}
A & =\sum_{j=1}^{k} v_{j}^{\top} P D P^{\top} v_{j} \\
& =\sum_{j=1}^{k}\left(v_{j}^{\top} P D^{1 / 2}\right)\left(D^{1 / 2} P^{\top} v_{j}\right) \\
& =\sum_{j=1}^{k}\left(D^{1 / 2} P^{\top} v_{j}\right)^{\top}\left(D^{1 / 2} P^{\top} v_{j}\right) \\
& =\sum_{j=1}^{k}\left\|D^{1 / 2} P^{\top} v_{j}\right\|^{2} \\
D^{1 / 2} P^{\top} v_{j} & =\left[\begin{array}{cc}
\lambda_{1}^{1 / 2} & \lambda_{2}^{1 / 2} \\
O & \ddots \\
0 & \lambda_{n}^{1 / 2}
\end{array}\right]\left[\begin{array}{c}
P_{1}^{\top} \\
P_{2}^{\top} \\
\vdots \\
P_{n}^{\top}
\end{array}\right] v_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
\lambda_{1}^{1 / 2} & \lambda_{2}^{1 / 2} & 0 \\
0 & \ddots & \lambda_{n}^{1 / 2}
\end{array}\right]\left[\begin{array}{l}
p_{1}^{\top} v_{j} \\
p_{2}^{\top} v_{j} \\
p_{n}^{\top} v_{j}
\end{array}\right] \\
& =\left[\lambda_{1}^{1 / 2} p_{1}^{\top} v_{j}|\ldots| \lambda_{n}^{1 / 2} p_{n}^{\top} v_{j}\right]^{\top} \\
& \left\|D^{1 / 2} p^{\top} v_{j}\right\|^{2}=\sum_{i=1}^{n}\left(\lambda_{i}^{1 / 2} P_{i}^{\top} v_{j}\right)^{2}=\sum_{i=1}^{n} \lambda_{i}\left(p_{i}^{\top} v_{j}\right)^{2} \\
& \sum_{j=1}^{k} v_{j}^{\top} M v_{j}=\sum_{j=1}^{k} \sum_{i=1}^{n} \lambda_{i}\left(p_{i}^{\top} v_{j}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \lambda_{i} \underbrace{2}_{=\| p p_{j} \sum_{j=1}^{k}\left(p_{i}^{\top} v_{j} \|^{2}\right.} \\
& =\sum_{i=1}^{n} a_{i} \lambda_{i}, \quad a_{i}=\left\|p r_{r_{j}} p_{i}\right\|^{2} \\
& \begin{array}{l}
\sum_{i=1}^{n} a_{i}=
\end{array}=\sum_{i=1}^{n} \sum_{j=1}^{k}\left(p_{i}^{\top} v_{j}\right)^{2} \quad 0 \leq a_{i} \leq 1 \\
& =\sum_{j=1}^{k} \underbrace{\sum_{i=1}^{n}\left(p_{i}^{\top} v_{j}\right)^{2}}_{\|=1}=K
\end{aligned}
$$

HW1\#6 $\sum_{i=1}^{n} a_{i} \lambda_{i} \subseteq \sum_{i=1}^{k} \lambda_{i}$
Choice of $v_{1}=p_{1}, v_{2}=p_{2}, \ldots, v_{k}=p_{k}$ gives $a_{i}=\left\|p_{\text {raj }}^{L} p_{i}\right\|^{2}=\left\|p_{i}\right\|^{2}=1$ for $i \leq k$
It $i>k$ then $p_{i} \perp p_{j}, j \leq k$ s. $a_{i}=0$ for $i>k$.

Sinee $\sum_{i=1}^{n} a_{i} \lambda_{i}=\sum_{i=1}^{k} \lambda_{i}$, this choire is optimat.

PCA for dimension reduction
The steps for dimension reduction to \mathbb{R}^{k} are outlined below. We assume we are given an $m \times n$ data matrix X

1. Compute the PCA covariance matrix $M=X^{T} X$, with the option of centering X first.
2. Compute the top k eigenvectors of M, and store them in a matrix P of size $n \times k$.
3. Compute the PCA dimension reduced dataset $B=X P$.

$$
m \times k
$$

$$
B=\left[\begin{array}{l}
x_{1}^{\top} \\
x_{1}^{\top} \\
x_{m}^{2}
\end{array}\right]\left[\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{k}
\end{array}\right]
$$

Example on MNIST

(a) 0

(d) $0,1,2,3$

(b) 0,1

(e) $0,1,2,3,4$

(c) $0,1,2$

(f) $0,1,2,3,4,5$

How many principal directions?

If we wish to capture $\alpha \in[0,1]$ fraction of the total variation in the data, we can choose k so that

$$
\sum_{i=1}^{k} \lambda_{i} \geq \alpha \underline{\operatorname{Trace}(M)}=\propto \sum_{i=1}^{\infty} d_{i}
$$

Intro to PCA Notebook: (.ipynb)

