# Mathematics of Image and Data Analysis Math 5467

Applications of PCA

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

#### Last time

• Principal Component Analysis (PCA) Theory

## Today

#### Applications of PCA:

- PCA-based image compression
- PCA-based handwritten digit recognition

## Principal Component Analysis (PCA)

Given points  $x_1, x_2, \ldots, x_m$  in  $\mathbb{R}^n$ , find the k-dimensional linear or affine subspace that "best fits" the data in the mean-squared sense. That is, we seek an affine subspace  $A = x_0 + L$  that minimizes the energy

$$E(x_0, L) = \sum_{i=1}^{m} ||x_i - \text{Proj}_A x_i||^2.$$

**PCA:** Set  $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_m \end{bmatrix}^T$ .

- 1. (Optional) Center the data  $X = X x_0$ , where  $x_0 = \frac{1}{m} \sum_{i=1}^m x_i$ .
- 2. Find the top k eigenvectors  $p_1, \ldots, p_k$  of the covariance matrix  $M = X^T X$ .
- 3. The best linear subspace that fits X is

$$L = \operatorname{span}\{p_1, \dots, p_k\}.$$

If the data was centered, then the affine space of best fit is  $x_0 + L$ .

#### Projection vs dimension reduction

Let us write

$$P_k = \begin{bmatrix} p_1 & p_2 & \cdots & p_k \end{bmatrix},$$

and  $L = \operatorname{span}(p_1, \dots, p_k)$ .

Then for  $x \in \mathbb{R}^n$ :

- Projection:  $\operatorname{Proj}_L x = P_k P_k^T x \in \mathbb{R}^n$ .
- Coordinates of x in L:  $P_k^T x \in \mathbb{R}^k$ .

For  $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_m \end{bmatrix}^T$  the equivalent formulas are

- Projection:  $XP_kP_k^T \in \mathbb{R}^{m \times n}$ .
- Coordinates of X in L:  $XP_k \in \mathbb{R}^{m \times k}$ .

#### PCA for image compression

An image is just a matrix X, where X(i,j) is the brightness at pixel (i,j).

Naive PCA-based compression is

$$X \approx X P_k P_k^T$$
.

Why is this compression?

- We store  $XP_k \in \mathbb{R}^{m \times k}$  and  $P_k \in \mathbb{R}^{n \times k}$  instead of  $X \in \mathbb{R}^{m \times n}$ .
  - If m = n, then compression ratio is n to 2k.

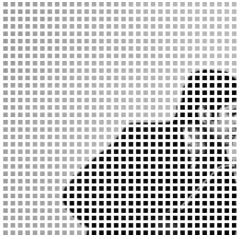
This would work well if the row-space of X has some low-dimensional structure.

• Not usually true for images.

### Patch-based compression (.ipynb)

A better idea is to split the image into blocks or patches.





# Handwritten digit recognition

| Handwitteen digit recognition |   |   |   |   |   |   |   |            |   |   |   |   |   |   |
|-------------------------------|---|---|---|---|---|---|---|------------|---|---|---|---|---|---|
| ゞ                             | 0 | Ч | 1 | 9 | 2 | ١ | 3 | 1          | 4 | 3 | 5 | 3 | 6 | 1 |
| 7                             | 2 | 8 | 6 | 9 | Ч | 0 | 9 | /          | 1 | 2 | 4 | 3 | 2 | 7 |
| B                             | 8 | 6 | 9 | 0 | 5 | 6 | 0 | 7          | 6 | 1 | 8 | 1 | 9 | 3 |
| 9                             | 8 | 5 | 3 | 3 | 3 | 0 | 7 | 4          | 9 | 8 | 0 | 9 | 4 | 1 |
| 4                             | 4 | 6 | Ø | 4 | 5 | 6 | 7 | $\Diamond$ | 0 | 1 | 7 | ) | 6 | 3 |
| 0                             | 2 | 1 | 1 | 1 | ප | 0 | 2 | 6          | 7 | 8 | 3 | 9 | 0 | 4 |
| 6                             | 7 | 4 | 6 | 8 | 0 | 7 | 8 | 3          | 1 | 5 | 7 | 1 | 7 | 1 |
| 1                             | 6 | 3 | 0 | 2 | 9 | 3 | 1 | 1          | 0 | 4 | 9 | Z | 0 | 0 |
| 7                             | 0 | 2 | 7 | 1 | 8 | 6 | 4 | 1          | 6 | 3 | 4 | 3 | 9 | \ |
| 3                             | 3 | 8 | ડ | 4 | ) | 1 | 4 | 2          | 8 | 5 | 8 | 6 | 7 | 3 |

#### Handwritten digit recognition (.ipynb)

**IDEA:** Use PCA to learn low dimensional affine spaces  $A_0, A_1, \ldots, A_9$  approximating each MNIST digit. To classify a new image x, we find the closest affine space by minimizing the residual

$$d_i(x) := ||x - \text{Proj}_{A_i} x|| = ||(I - P_i P_i^T)(x - \overline{x}_i)||$$

over i = 0, 1, ..., 9.

In Python, it is easier to do the computation above with a data matrix

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_m \end{bmatrix}^T$$

in which case the formula is

$$X - \operatorname{Proj}_{A_i} X = (X - \overline{x}_i)(I - P_i P_i^T).$$