Mathematics of Image and Data Analysis Math 5467

Linear Algebra, Calculus \& Python I

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

Announcements

- HW1 due Friday. Submission will be via Google Forms. Details to come on Wednesday.
- Code as Google Colab Notebook (or .py or .ipynb files). Half the marks for programming exercises or projects are awarded if your code runs without errors. Make sure your code works!
* Do a factory reset in Google Colab and test your code on a clean kernel.
- Math can be included in a Google Colab Notebook (it supports LaTeX), or typed up in LaTeX (submit a PDF), or handwritten and scanned (high quality) with scanner or smartphone app.
- 3 choices for project 1 are up on the website. Choose 1 to complete. http://www-users.math.umn.edu/~jwcalder/5467/homework.html
- Project descriptions are in the course notes, and Python notebooks on course website.
- I will answer questions nightly on Piazza.

Last time: Linear algebra review

- Capital letters A, B, C for matrices (entries are $A(i, j))$
- Lower case letteers $x, y, z, x_{1}, x_{2}, x_{3}, x_{4}, \ldots$ for (column) vectors.
- $e_{1}, e_{2}, \ldots, e_{n}$ are the standard basis vectors in \mathbb{R}^{n}.
- Matrix multiplication: A is $m \times n$ and B is $n \times p$ then $C=A B$ is the $m \times p$ matrix with entries

$$
C(i, j)=\sum_{k=1}^{n} A(i, k) B(k, j)
$$

- A^{T} denotes the transpose of A.
- Dot product $x^{T} y=\sum_{i=1}^{n} x(i) y(i)$.
- Norm: $\|x\|=\sqrt{x^{T} x}=\sqrt{x(1)^{2}+x(2)^{2}+\cdots+x(n)^{2}}$.
- Algebra: $\|x \pm y\|^{2}=\|x\|^{2} \pm 2 x^{T} y+\|y\|^{2}$.

Rank-one matrix

For vectors x, y of length n, the rank-one matrix $A=x y^{T}$ is the $n \times n$ matrix with entries

$$
A(i, j)=x(i) y(j)
$$

It is called rank-one since the range of A is one dimensional and spanned by the vector x. Indeed,

$$
A z=x y^{T} z=\left(y^{T} z\right) x
$$

for any vector z.

Exercise

Let $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ be a collection of vectors of length n. Define the $m \times n$ matrix

$$
X=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{m}
\end{array}\right]^{T}=\left[\begin{array}{c}
x_{1}^{T} \\
x_{2}^{T} \\
\vdots \\
x_{m}^{T}
\end{array}\right] .
$$

Show that

$$
\sum_{i=1}^{m} x_{i} x_{i}^{T}=X^{T} X
$$

Today

- Projection
- Introduction to Numpy

Projection

Let $L \subset \mathbb{R}^{n}$ be a linear subspace spanned by the orthonormal vectors $v_{1}, v_{2}, \ldots, v_{p}$, where $p \leq n$. That is

$$
L=\left\{\sum_{i=1}^{p} a_{i} v_{i}: a_{i} \in \mathbb{R}\right\}
$$

In this case, L is p-dimensional.

- Orthonormal means that $\left\|v_{i}\right\|=1$ and $v_{i}^{T} v_{j}=0$ for $i \neq j$.

$$
1=\left\|v_{i}\right\|=\sqrt{V_{i}^{T} V_{i}}, \quad V_{i}^{T} V_{i}=1
$$

Definition 1. The projection of a point $x \in \mathbb{R}^{n}$ onto L, denoted $\operatorname{Proj}_{L} x$, is the closest point in the subspace L to x. That is, $\operatorname{Proj}_{L} x \in L$ satisfies

$$
\left\|\operatorname{Proj}_{L} x-x\right\| \leq\|y-x\| \text { for all } y \in L
$$

Projection
We claim that

$$
\operatorname{Proj}_{L} x=\sum_{i=1}^{p}{\widetilde{\left(x^{T} v_{i}\right) v_{i}}}_{a_{i}}^{\text {in }}
$$

Write $z=\operatorname{pric}_{i} x=\sum_{i=1}^{p} a_{i} v_{i}$

$$
\begin{aligned}
\| \text { rios }_{L} x-x \|^{2} & =\|z-x\|^{2} \\
& =\|z\|^{2}-2 x^{\top} z+\|x\|^{2} \\
\|z\|^{2}=z^{\top} z & =z^{\top} \sum_{i=1}^{P} a_{i} v_{i} \\
& =\sum_{i=1}^{P} a_{i} z^{\top} v_{i}
\end{aligned}
$$

$$
\begin{aligned}
&=\sum_{i=1}^{P} a_{i}\left(\sum_{j=1}^{P} a_{j} v_{j}\right)^{\top} v_{i} \\
&=\sum_{i=1}^{P} \sum_{j=1}^{p} a_{i} a_{j} v_{j}^{\top} v_{i} \quad \text { orhonormal } \\
& \quad v_{j}^{\top} v_{i}=0 \quad i \neq j \\
& v_{i}^{\top} v_{i}=1 \\
& x^{\top} z=x^{2}=\sum_{i=1}^{P} a_{i}^{2} \\
& \| \sum_{i=1}^{P} a_{i} v_{i}=\sum_{i=1}^{P} a_{i} x^{\top} v_{i} \\
&\left\|p \operatorname{rij}_{i} x-x\right\|^{2}=\sum_{i=1}^{P} a_{i}^{2}-2 \sum_{i=1}^{8} a_{i} x^{\top} v_{i}+\|x\|^{2} \\
&=\sum_{i=1}^{8}\left(a_{i}^{2}-2 a_{i} x^{\top} v_{i}\right)+\|x\|^{2}
\end{aligned}
$$

Minimize over a_{i}. Dift. in a_{i}
set

$$
\begin{array}{r}
\frac{\partial}{\partial a_{i}}\|\operatorname{prij} x-x\|^{2}=0 \\
2 a_{i}-2 x^{\top} v_{i}=0 \\
a_{i}=x^{\top} v_{i}
\end{array}
$$

Projection
Since the v_{i} are orthonormal, we have
(1)

$$
\left\|\operatorname{Proj}_{L} x\right\|^{2}=\sum_{j=1}^{p}\left(x^{T} v_{i}\right)^{2}
$$

$\operatorname{Recall} \quad z=\sum_{i=1}^{P} a_{i} v_{i},\|z\|^{2}=\sum_{i=1}^{P} a_{i}^{2}$

$$
\begin{aligned}
\operatorname{proj}_{L} x & =\sum_{i=1}^{P}\left(v_{i}^{\top} x\right) v_{i} \\
& =\underbrace{\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{p}
\end{array}\right]}\left[\begin{array}{c}
v_{1}^{\top} x \\
v_{2}^{\top} x \\
\vdots \\
v_{p}^{\top} x
\end{array}\right]
\end{aligned}
$$

$$
=V\left[\begin{array}{c}
V_{\tau}^{\top} \\
V_{\tau}^{\top} \\
V_{T}^{\top}
\end{array}\right] x=V V_{x}^{\top}
$$

Projection
It can be useful to write the projection in matrix form.

Then we have

$$
V=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{p}
\end{array}\right]
$$

The residual is

Exercise 2. Show that the projection is orthogonal, that is

$$
\left(x-\operatorname{Proj}_{L} x\right)^{T} v_{i}=0, \quad i=1, \ldots, p
$$

Use this to show that

$$
\begin{aligned}
& \text { Use this to show that } \\
& \qquad\|x\|^{2}=\left\|\operatorname{Proj}_{L} x\right\|^{2}+\left\|x-\operatorname{Proj}_{L} x\right\|^{2} \text { PM Mhos } \\
& \left(X-\operatorname{pri}_{L} x\right)^{\top} V_{j}=\left(X-\sum_{i=1}^{P}\left(v_{i}^{\top} x\right) V_{i}\right)^{T} V_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x^{\top}-\sum_{i=1}^{p}\left(v_{i}^{\top} x\right) v_{i}^{\top}\right) v_{j} \\
& =x^{\top} v_{j}-\sum_{i=1}^{p}\left(v_{i}^{\top} x\right) \underbrace{v_{i}^{\top} v_{j}} \\
& =x^{\top} v_{j}-v_{j}^{\top} x \\
& =0 \quad \text { if i} j \\
& =0 \quad=1 \text { if } i=j \\
&
\end{aligned}
$$

for every $V_{j}, j=1, \ldots, p$.

$$
\|x\|^{2}=\left\|\operatorname{prij}_{\iota} x\right\|^{2}+\|x-\operatorname{prij} L\|^{2}
$$

$$
\begin{aligned}
& \left\|\operatorname{prij} L^{x}-x\right\|^{2}=\|z-x\|^{2} \quad z=\operatorname{Prijx} x \\
& =\|z\|^{2}-2 x^{\top} z+\|x\|^{2} \\
& =\left\|p_{\text {rojL }} x\right\|^{2}-2 x^{\top} \operatorname{prej}_{L} x+\|x\|^{2} \\
& =\sum_{i=1}^{P}\left(x^{\top} v_{i}\right)^{2}-2 x^{\top} \sum_{i=1}^{\rho}\left(x^{\top} v_{i}\right) v_{i}+\|x\|^{2} \\
& =\sum_{i=1}^{P}\left(x^{\top} v_{i}\right)^{2}-2 \sum_{i=1}^{P}(\underbrace{\left(x_{i}\right)\left(x^{\top} v_{i}\right.}_{\left(x^{\top} v_{i}\right)^{2}})+\|x\|^{2} \\
& =-\sum_{i=1}^{p}\left(x^{\top} v_{i}\right)^{2}+\|x\|^{2}
\end{aligned}
$$

$$
=-\left\|p r \rho_{l} x\right\|^{2}+\|x\|^{\circ}
$$

IIII

$$
v=\left[v_{1} \cdots v_{p}\right]
$$

Exercises
Exercise 3. Show that
(i) $V^{T} V=I$.
(ii) $\left(V V^{T}\right)^{2}=V V^{T}$
(iii) $\left(I-V V^{T}\right)^{2}=I-V V^{T}$.

Exercise 4. Let L be a linear subspace of \mathbb{R}^{n}.
(i) Show that $\left\|\operatorname{Proj}_{L} x\right\| \leq\|x\|$.
(ii) Show that $\operatorname{Proj}_{L} x=x$ if and only if $x \in L$.
(iii) Show that if $\operatorname{Proj}_{L} x=x$ for all $x \in \mathbb{R}^{n}$, then $L=\mathbb{R}^{r}$.

Affine projection

An affine space has the form

$$
A=x_{0}+L=\left\{x_{0}+y: y \in L\right\}
$$

where L is a linear subspace of \mathbb{R}^{n}. Projection onto an affine space is given by

$$
\begin{equation*}
\operatorname{Proj}_{A} x=x_{0}+\operatorname{Proj}_{L}\left(x-x_{0}\right) \tag{2}
\end{equation*}
$$

Introduction to Numpy(.ipynb)

