Mathematics of Image and Data Analysis Math 5467

Signal Denoising

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

Last time

• Parseval and Convolution

Today

• Signal Denoising with Tikhonov regularization

Announcemnets

- No office hours this week (unless by appointment).
- · Wed lecture over Zoom only

Recall

Definition 1. The Discrete Fourier Transform (DFT) is the mapping $\mathcal{D} : L^2(\mathbb{Z}_n) \to L^2(\mathbb{Z}_n)$ defined by

$$\mathcal{D}f(\ell) = \sum_{k=0}^{n-1} f(k)\omega^{-k\ell} = \sum_{k=0}^{n-1} f(k)e^{-2\pi ik\ell/n},$$

where $\omega = e^{2\pi i/n}$ and $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ is the cyclic group $\mathbb{Z}_n = \mathbb{Z}/n$.

Definition 2 (Inverse Discrete Fourier Transform). The Inverse Discrete Fourier Transform (IDFT) is the mapping $\mathcal{D}^{-1}: L^2(\mathbb{Z}_n) \to L^2(\mathbb{Z}_n)$ defined by

$$\mathcal{D}^{-1}f(\ell) = \frac{1}{n} \sum_{k=0}^{n-1} f(k)\omega^{k\ell} = \frac{1}{n} \sum_{k=0}^{n-1} f(k)e^{2\pi ik\ell/n}$$

Lemma 3 (Convolution and the DFT). For $f, g \in L^2(\mathbb{Z}_n)$ we have

(1)
$$\mathcal{D}(f * g) = \mathcal{D}f \cdot \mathcal{D}g.$$

Exercise on discrete derivatives

Exercise 4. Discrete derivatives (difference quotients) can be interpreted as convolutions. Complete the following exercises.

(i) For $f \in L^2(\mathbb{Z}_n)$ define the backward difference

$$\nabla^{-}f(k) = f(k) - f(k-1).$$

Find $g \in L^2(\mathbb{Z}_n)$ so that $\nabla^- f = g * f$ and use this with Lemma 3 to show that $\mathcal{D}(\nabla^- f)(k) = (1 - \omega^{-k})\mathcal{D}f(k)$, where $\omega = e^{2\pi i/n}$.

(ii) For $f \in L^2(\mathbb{Z}_n)$ define the forward difference

$$\nabla^+ f(k) = f(k+1) - f(k).$$

Find $g \in L^2(\mathbb{Z}_n)$ so that $\nabla^+ f = g * f$ and use this with Lemma 3 to show that $\mathcal{D}(\nabla^+ f)(k) = (\omega^k - 1)\mathcal{D}f(k).$

(iii) For $f \in L^2(\mathbb{Z}_n)$ define the centered difference by

$$\nabla f(k) = \frac{1}{2} (\nabla^{-} f(k) + \nabla^{+} f(k)) = \frac{1}{2} (f(k+1) - f(k-1)).$$

Use parts (i) and (ii) to show that

$$\mathcal{D}(\nabla f)(k) = \frac{1}{2}(\omega^k - \omega^{-k})\mathcal{D}f(k) = i\sin(2\pi k/n)\mathcal{D}f(k).$$

(iv) For $f \in L^2(\mathbb{Z}_n)$, define the discrete Laplacian as

$$\Delta f(k) = \nabla^+ \nabla^- f(k) = f(k+1) - 2f(k) + f(k-1).$$

Use parts (i) and (ii) to show that

$$\mathcal{D}(\Delta f)(k) = (\omega^k + \omega^{-k} - 2)\mathcal{D}f(k) = 2(\cos(2\pi k/n) - 1)\mathcal{D}f(k). \qquad \triangle$$

Signal denoising

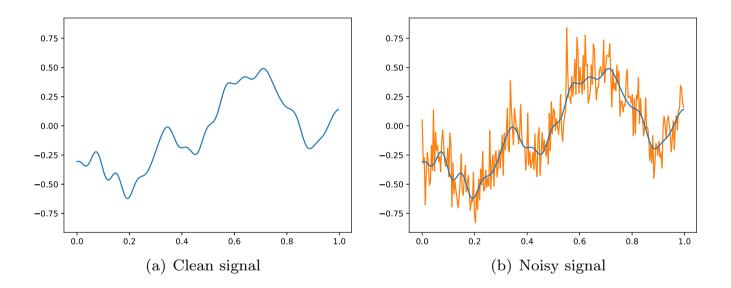


Figure 1: Example of a clean signal, and a noisy version, corrupted with additive Gaussian noise. The clean signal is superimposed over the noisy one in (b) for reference.

Sources of noise

A brief (and not exhaustive) list of sources of signal noise.

- Signal acquisition (microphone diaphragm, camera sensor).
- Thermal noise in electronic circuitry.
- Noise from signal compression artifacts.
- Corruption of wireless signals.

Tikhonov regularization

Let $f \in L^{2}(\mathbb{Z}_{n})$ be the noisy signal. Tikhonov regularized denoising minimizes the energy $E: L^{2}(\mathbb{Z}_{n}) \to L^{2}(\mathbb{Z}_{n})$ defined by (2) $E(u) = \sum_{k=0}^{n-1} |u(k) - f(k)|^{2} + \lambda \sum_{k=0}^{n-1} |u(k) - u(k-1)|^{2},$ Data Fidelity Regularizer

where $\lambda \geq 0$ is a parameter.

Main ideas:

- Data fidelity keeps the denoised signal close to the noisy signal f.
- Regularizer removes the noise.

Tikhonov regularization

We recall the backward difference $\nabla^- : L^2(\mathbb{Z}_n) \to L^2(\mathbb{Z}_n)$ is defined by

$$\nabla^{-}u(k) = u(k) - u(k-1),$$

 $||u||^2 = \sum_{k=0}^{N-1} |u|k_0|^2$

while the forward difference is $\nabla^+ u(k) = u(k+1) - u(k)$. The discrete Laplacian is

$$\Delta u = \nabla^+ \nabla^- u = \nabla^- \nabla^+ u.$$

In terms of this notation, the Tikhonov regularized denoising problem is

Theorem 5. Let $\lambda \geq 0$ and $f \in L^2(\mathbb{Z}_n)$. Then there exists a unique solution $u \in L^2(\mathbb{Z}_n)$ of the optimization problem (3). Furthermore, the minimizer u is also characterized as the unique solution of the Euler-Lagrange equation

(4)
$$u - \lambda \Delta u = f.$$
 $\nabla E = O$

Properties of discrete derivatives

Before proving the theorem, we need to establish some basic properties of discrete derivatives. These are the discrete analogs of integration by parts formulas.

Proposition 6. For all $u, v \in L^2(\mathbb{Z}_n)$ the following hold. $\begin{array}{l} (i) \langle \nabla^{-}u, v \rangle = -\langle u, \nabla^{+}v \rangle \\ (i) \langle \nabla^{+}u, v \rangle = -\langle u, \nabla^{-}v \rangle \\ (iii) \langle \Delta u, v \rangle = \langle u, \Delta v \rangle - D \quad \text{self adjoint} \end{array}$ $(uv) \langle \Delta u, v \rangle = \langle u, \Delta v \rangle - \langle v \rangle = \langle u, \nabla v \rangle = \langle u, \Delta v \rangle$ $(vv) \langle \Delta u, v \rangle = \langle u, \Delta v \rangle = \langle v \rangle = \langle v \rangle = \langle u, \Delta v \rangle = \langle u, \Delta v \rangle$ **Remark 7.** We can take u = v to obtain $\|\nabla^{+}u\|^{2} = \|\nabla^{-}u\|^{2} = -\langle \Delta u, u \rangle.$

(i)
$$\langle \nabla u, v \rangle = \sum_{k=0}^{n-1} \nabla u(k) \nabla (k)$$

= $\sum_{k=0}^{n-1} (u(k) - u(k-1)) \nabla (k)$

$$= \int_{k=0}^{n-1} u(k) \nabla(k) - \int_{k=0}^{n-1} u(k-i) \nabla(k)$$

$$= \int_{k=0}^{n-1} u(j) \nabla(j+i)$$

$$= \int_{k=0}^{n-1} u(k) \nabla(k) - \int_{k=0}^{n-1} u(k) \nabla(k+i)$$

$$= \sum_{k=0}^{m} u(k) (v(k) - v(k+i)) = -\langle u, \nabla^{\dagger}v \rangle.$$

$$= -\nabla^{\dagger}v(k)$$
Proof of Theorem 5: (4) $u - \lambda \Delta u = f.$
D Equation 14) hor a unique solution $u.$
Uniquenes: let u, v solve (4)
$$u - \lambda \Delta u = f.$$

$$= (v - \lambda \Delta u = f.)$$
Set $w = u - v: \quad w - \lambda \Delta w = O$
Take inverproduct $\langle \cdot, \rangle$ of both sides

with w $(\omega - \lambda \delta \omega, \omega) = 0$ $\langle v, w \rangle - \lambda \langle \delta w, w \rangle = 0$ $\|\nabla^+ u\|^2 = \|\nabla^- u\|^2 = -\langle \Delta u, u \rangle$ $\|w\|^2 + \lambda \|\nabla^{\dagger}w\|^2 = O$ $= \sum (J = 0) = \sum (J = V) \text{ and } Sol^{2}$ is unique for $\lambda \ge 0$. Existence follow from Rank-Nullity Thorem $u - \lambda ou = f \implies Ax = f$

$$\frac{\partial}{\partial t} t = u \in U(2n) \text{ solve } u - \lambda Du = f$$

$$\frac{\partial t}{\partial t} = E(u) \leq E(u) \quad \forall w \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a transformed solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U - u \text{ for a solved solved} \quad \forall t \in U(2n)$$

$$\frac{\partial t}{\partial t} = U(1) - U(1) \text{ for a solved solved} \quad \forall t \in U(1) \text{ for a solved solved solved solved} \quad \forall t \in U(1) \text{ for a solved so$$

 $= \frac{d}{dt} ||u + tv||^{2} + \lambda \frac{d}{dt} ||\nabla(u + tv)||^{2}$ $= \frac{d}{dt} (u + tv, u + tv)$ $= \frac{d}{dt} (u + tv, u + tv)$ $z = \frac{d}{dt} ((u, u+tv) + (tv, u+tv))$ z = a + ibz = a - ib $= \frac{1}{Jt} \left(\langle u, u \rangle + t \langle u, v \rangle + t \langle v, u \rangle + t^2 \langle v, v \rangle \right)$ 2+2 = 20 $= \langle u, v \rangle + \langle v, u \rangle + \partial t \|v\|^2$ (u, v) - (1,17 $= \langle u, v \rangle + \overline{\langle u, v \rangle} + a \pm ||v||^2$

= 2 Re (y,v) + 2 t //v/12 $\frac{1}{dt} \left(\nabla u + t \nabla v, \nabla u + t \nabla v \right)$ B = $= \frac{d}{dt} \left(\|\nabla u\|^{2} + \partial t \operatorname{Re}(\nabla u, \nabla v) + \frac{d}{2} \|\nabla v\|^{2} \right)$ $= \partial \operatorname{Re}(\nabla u, \nabla v) + \partial t \|\nabla v\|^{2}$ $=-a \operatorname{Re}\left(\nabla^{\dagger} \nabla^{\dagger} u, v\right) + a t \|\nabla^{\prime}\|^{2}$ $z = 2 \operatorname{Re}(\Delta u, v) + 2 + || \nabla v ||^2$

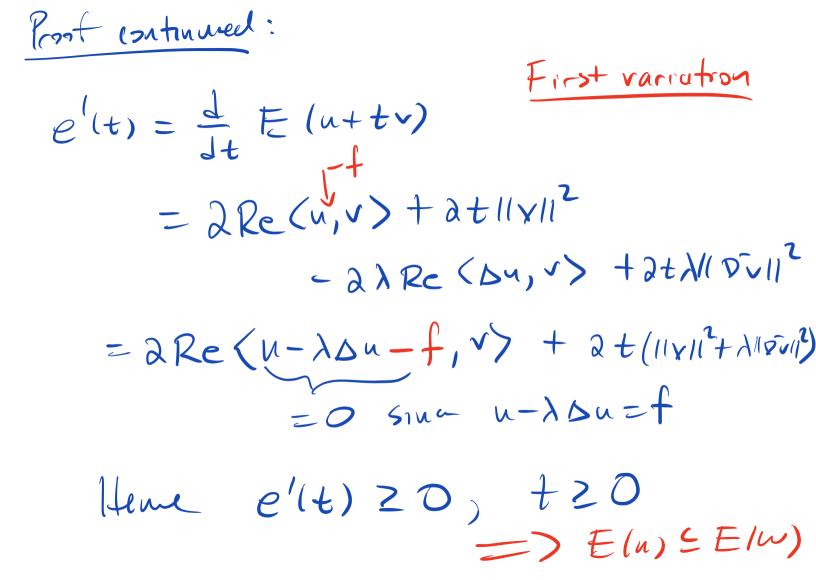
Maximum principle

Proposition 8 (Maximum Principle). Let $\lambda \geq 0$ and let $f \in L^2(\mathbb{Z}_n)$ be real-valued. Let $u \in L^2(\mathbb{Z}_n)$ be the denoised signal, i.e., the solution of

$$u - \lambda \Delta u = f,$$

which is also real-valued. Then we have

 $\min_{\mathbb{Z}_n} f \le u \le \max_{\mathbb{Z}_n} f.$ (5)It is any minimizer at E then $O = e'(n) = \frac{1}{dt} E(u + tv) = aRe(u - \lambda bu - f, v)$ $\forall v \in U(Bu)$ Since $e(g) \in e(t)$ =) $u - \lambda Du = f$.



 $\mathcal{D}(\Delta f)(k) = (\omega^k + \omega^{-k} - 2)\mathcal{D}f(k) = 2(\cos(2\pi k/n) - 1)\mathcal{D}f(k).$

How to solve the Euler-Lagrange equation?

We can use the DFT (and FFT) to solve the Tikhonov regularized denoising equation

$$D\left(u-\lambda\Delta y\right)=f.$$

Indeed, the solution is given by

(6)
$$u = \mathcal{D}^{-1}(G_{\lambda} \cdot \mathcal{D}f).$$

where

$$G_{\lambda}(k) = \frac{1}{1 + 2\lambda - 2\lambda \cos(2\pi k/n)}.$$

 $Du - \lambda D(\Delta u) = Df$ $Du(k) - 2\lambda (\cos(2\pi k/u) - 1) Du(k) = Df(k)$ $Du(k) (1 + 2\lambda - 2\lambda \cos(2\pi k/u)) = Df(k)$

Maximum principle

Proposition 8 (Maximum Principle). Let $\lambda \geq 0$ and let $f \in L^2(\mathbb{Z}_n)$ be real-valued. Let $u \in L^2(\mathbb{Z}_n)$ be the denoised signal, i.e., the solution of

$$u - \lambda \Delta u = f,$$

which is also real-valued. Then we have

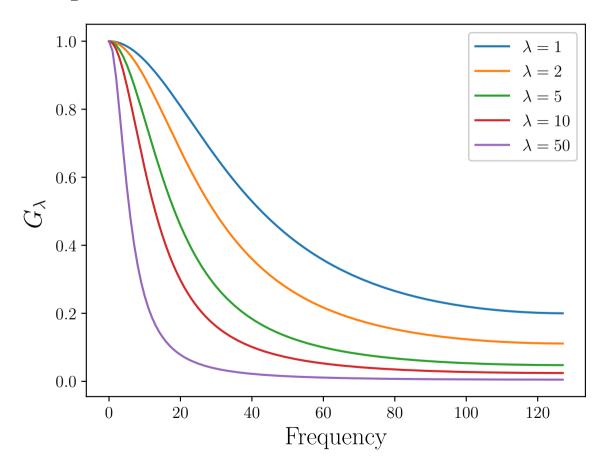
(5)
$$\min_{\mathbb{Z}_n} f \le u \le \max_{\mathbb{Z}_n} f$$

Pront: let K be a muximum of U: U(k) ZU(j) Vj. Then

$$\Delta u(k) = u(k+i) - \alpha u(k) + u(k-i) \leq 0$$

$$\leq u(k) \qquad \leq u(k)$$

The low-pass filter G_{λ}



The filtering perspective $u = \overline{\mathcal{D}}'(6_{\lambda} \mathcal{D}f)$

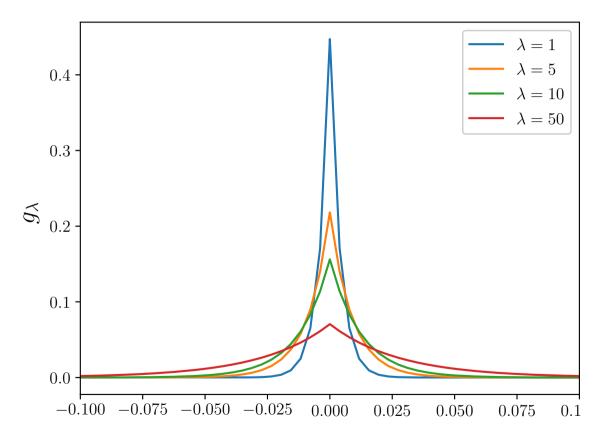
Defining $g_{\lambda} = \mathcal{D}^{-1}G_{\lambda}$ we have

$$u = \mathcal{D}^{-1}(\mathcal{D}g_{\lambda} \cdot \mathcal{D}f) = g_{\lambda} * f.$$

The function g_{λ} is often called a *kernel*. The convolution to compute u(k) should be thought of as a weighted average, weighted by g_{λ} , of the values of f nearby k. Indeed, we have

$$u(k) = (g_{\lambda} * f)(k) = \sum_{j=0}^{n-1} g_{\lambda}(j)f(k-j).$$

The convolutional kernel g_{λ} (fundamental solution)



Tikhonov denoising (.ipynb)