Mathematics of Image and Data Analysis Math 5467

Total Variation (TV) Denoising

Instructor: Jeff Calder Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

Last time

• Tikhonov regularized denoising

Today

• Total Variation (TV) regularized denoising

Tikhonov regularization

Let $f \in L^2(\mathbb{Z}_n)$ be the noisy signal. Tikhonov regularized denoising minimizes the energy $E: L^2(\mathbb{Z}_n) \to L^2(\mathbb{Z}_n)$ defined by

(1)
$$E(u) = \underbrace{\sum_{k=0}^{n-1} |u(k) - f(k)|^2}_{\text{Data Fidelity}} + \lambda \underbrace{\sum_{k=0}^{n-1} |u(k) - u(k-1)|^2}_{\text{Regularizer}},$$

where $\lambda \geq 0$ is a parameter.

Main ideas:

- Data fidelity keeps the denoised signal close to the noisy signal f.
- Regularizer removes the noise.

Tikhonov regularization

We recall the backward difference $\nabla^- : L^2(\mathbb{Z}_n) \to L^2(\mathbb{Z}_n)$ is defined by

$$\nabla^{-}u(k) = u(k) - u(k-1),$$

while the forward difference is $\nabla^+ u(k) = u(k+1) - u(k)$. The discrete Laplacian is

$$\Delta u = \nabla^+ \nabla^- u = \nabla^- \nabla^+ u.$$

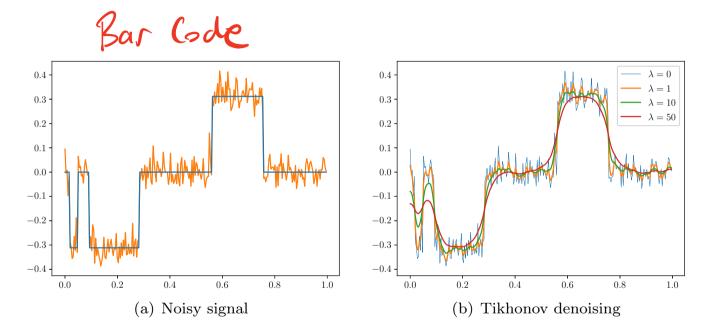
In terms of this notation, the Tikhonov regularized denoising problem is

(2)
$$\min_{u \in L^2(\mathbb{Z}_n)} E(u) = \frac{\|u - f\|^2}{\|u - f\|^2} + \lambda \|\nabla^- u\|^2.$$

Theorem 1. Let $\lambda \geq 0$ and $f \in L^2(\mathbb{Z}_n)$. Then there exists a unique solution $u \in L^2(\mathbb{Z}_n)$ of the optimization problem (2). Furthermore, the minimizer u is also characterized as the unique solution of the Euler-Lagrange equation

(3)
$$u - \lambda \Delta u = f.$$
 $\forall \mathcal{F} = \mathcal{O}$

Tikhonov regularization



Total Variation Regularization

Total Variation (TV) regularization replaces the squared difference by the absolute differences in the regularizer.

(4)
$$E(u) = \frac{1}{2} \sum_{k=0}^{n-1} |u(k) - f(k)|^2 + \lambda \sum_{k=0}^{n-1} |u(k) - u(k-1)|.$$
Total Variation

- TV regularization is better at preserving edges (sharp changes) in the signal.
- The analysis is more involved, since the denosing equation is *nonlinear*.

$||u||_{1} = \sum_{k=0}^{\infty} |u(k)|$ Variational Regularized Denoising

We will proceed in generality, studying regularizers of the form

(5)
$$\sum_{k=0}^{n-1} \Phi(u(k) - u(k-1)) = \sum_{k=0}^{n-1} \Phi(\nabla^{-}u(k)) = \|\Phi(\nabla^{-}u)\|_{1},$$

where $\Phi : \mathbb{R} \to \mathbb{R}$ is a twice continuously differentiable, convex, and even function satisfying $\Phi(0) = 0$. not twice differentiable

• Tikhonov is $\Phi(t) = t^2$

• Total Variation (TV) is
$$\Phi(t) = |t|$$
.

• We will approximate TV by $\Phi(t) = \sqrt{t^2 + \varepsilon^2}$.

Convexity

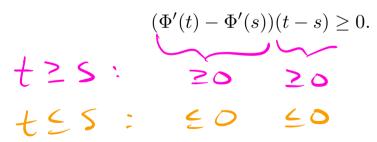
We say Φ convex if $\Phi'' \ge 0$. We also assumed Φ is even and $\Phi(0) = 0$. The following properties hold:

更'20

Ð

- (i) Φ' is increasing.
- (ii) Since Φ is even and $\Phi(0) = 0$ we have $\Phi'(0) = 0$.
- (iii) $\Phi'(t) \leq 0$ for t < 0 and $\Phi'(t) \geq 0$ for t > 0.

```
(iv) For any t, s \in \mathbb{R} we have
```



Total Variation Denoising

The Total Variation (TV) regularized denoising function is

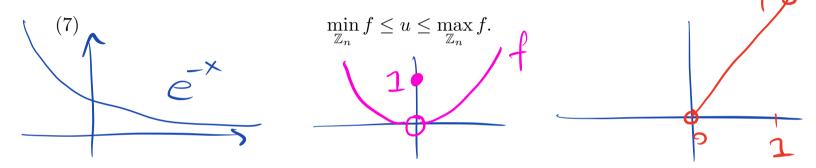
(6)
$$E_{\Phi}(u) = \frac{1}{2} \|u - f\|^2 + \lambda \|\Phi(\nabla^{-}u)\|_1.$$

The denoised signal u is found by minimizing E_{Φ} .

Note: We will work with real-value signals in this lecture, for simplicity. We denote by $L^2(\mathbb{Z}_n; \mathbb{R})$ the subspace of $L^2(\mathbb{Z}_n)$ consisting of $f : \mathbb{Z}_n \to \mathbb{R}$.

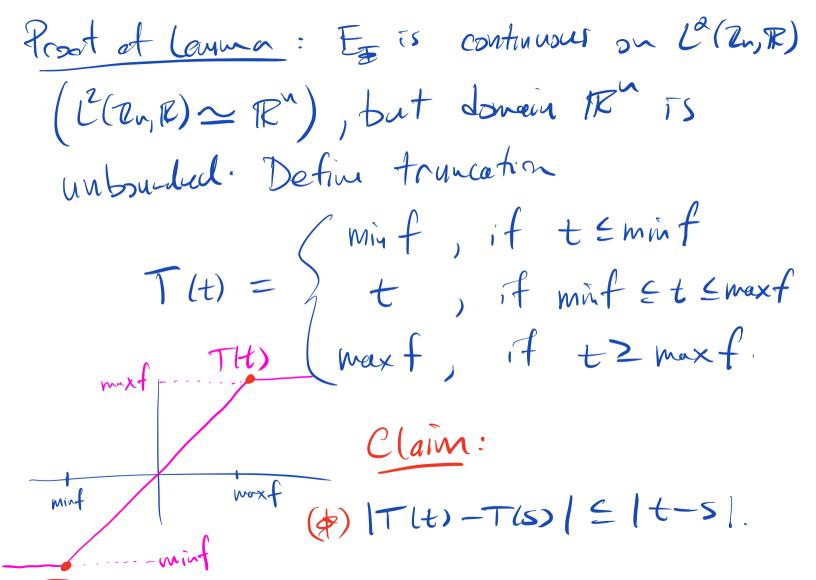
Existence of a minimizer

Lemma 2. For any $f \in L^2(\mathbb{Z}_n; \mathbb{R})$ and $\lambda \ge 0$, there exists $u \in L^2(\mathbb{Z}_n; \mathbb{R})$ minimizing E_{Φ} , i.e., $E_{\Phi}(u) \le E_{\Phi}(w)$ for all $w \in L^2(\mathbb{Z}_n; \mathbb{R})$. Furthermore, u satisfies



The proof is based on a simple fact: A continuous function on a closed and bounded subset of \mathbb{R}^n attains its minimum value.

- $f(x) = e^{-x}$ does not have a minimum value on \mathbb{R} (unbounded set).
- $f(x) = x^2$ for $x \neq 0$ and f(0) = 1 does not have a minimum value (discontinuous function).
- f(x) = x does not have a minimum value on (0, 1) (open set).



$$|t^{25}| = |t^{-5}| = \int |t^{-5}| = |t^{-5}|$$

Using claim, we'll show that

$$E_{\pm}(T(u)) \leq E_{\pm}(u)$$

To see this

$$\overline{\Phi}(\nabla T(u_{1})(k) = \overline{\Phi}(T(u(k)) - T(u(k-1)))$$

$$\overline{\Phi}(T) = \overline{\Phi}(T(u(k)) - T(u(k-1)))$$

$$\overline{\Phi}(T) = \overline{\Phi}(T(u(k)) - T(u(k-1)))$$

$$\overline{\Phi}(T) = \overline{\Phi}(T(u(k)) - T(u(k-1)))$$

$$\begin{split} &\stackrel{(\texttt{I})}{=} \underbrace{\mathbb{E}} \left(\left[u(k) - u(k-1) \right] \right) \\ &= \underbrace{\mathbb{E}} \left(\left[\nabla u \right] (k) \right] \\ &= \underbrace{\mathbb{E}} \left(\left[\nabla u \right] (k) \right] - \underbrace{f(k)}_{k=0}^{2} \right] \\ &= \underbrace{\sum_{k=0}^{n-1}}_{k=0}^{n-1} \left[\left[\nabla (u(k)) - f(k) \right]_{k=0}^{2} - \left[\left[\left[U(k) - f(k) \right]_{k=0}^{2} \right] \right] \\ &\stackrel{(\texttt{I})}{=} \underbrace{\sum_{k=0}^{n-1}}_{k=0}^{n-1} \left[u(k) - f(k) \right]_{k=0}^{2} = \left[\left[u - f(k) \right]_{k=0}^{2} \right] \\ & \text{This proves for claim.} \end{split}$$

Thus, we can minimize $E_{\mathbb{F}}$ sur the bounded set

 $A = \{ u \in \mathcal{C}(\mathcal{T}, \mathcal{R}) : \min f \in u \in \mathsf{mx} f \}$

Thus a minimizer exists. A

Euler-Lagrange equation

Lemma 3. Let $f \in L^2(\mathbb{Z}_n; \mathbb{R})$ and $\lambda \geq 0$. Then the minimizer $u \in L^2(\mathbb{Z}_n; \mathbb{R})$ of E_{Φ} is unique and is characterized as the unique solution of the Euler-Lagrange equation

(8)
$$u - \lambda \nabla^{+} \Phi'(\nabla^{-} u) = f. \qquad (\underline{P}(+) = \frac{1}{\tau} t)$$
$$\Delta u \quad f_{2} = Ti k \text{ housd} \quad (\underline{P}'(t) = t)$$

Recall

Proposition 4. For all $u, v \in L^2(\mathbb{Z}_n)$ the following hold.

(i)
$$\langle \nabla^{-}u, v \rangle = -\langle u, \nabla^{+}v \rangle$$

(ii) $\langle \nabla^{+}u, v \rangle = -\langle u, \nabla^{-}v \rangle$
(iii) $\langle \Delta u, v \rangle = \langle u, \Delta v \rangle$

Proof: let u be a minimizer and take a variation of Es in the direction VEL (Ry, R): $Q(t) = E_{\pi}(u + tv)$ Use that elt) has a minimum at t=0, to set $e^{(0)} = 0$

 $C'(t) = \frac{d}{dt} E_{\mathbb{P}}(u+tv)$ $= \frac{1}{2} \left\{ \frac{\|u + tv - f\|^2}{2} + \lambda \sum_{k=0}^{n-1} \mathbb{P} \left(\nabla u(k) + t \nabla v(k) \right) \right\}$ $= \underbrace{d \left\{ \underbrace{\|u - f\|^{2}}_{t = 0} + \underbrace{d t}_{t} \left(u - f, v \right) + \underbrace{d^{2} \|v\|^{2}}_{t = 0} \right\}}_{\substack{\mu = 0}}$ $= \chi(u-f,v) + \chi + t + v = 1$ + $\lambda \sum_{k=0}^{\infty} \overline{\overline{T}} (\nabla u(k) + t \nabla v(k)) \nabla v(k)$

 $0 = e'(0) = \langle u - f, v \rangle + \lambda \langle \Psi'(\nabla u), \nabla v \rangle$ Integrak by $\sum_{n=1}^{\infty} = (n-f, \sqrt{n} - \lambda (\sqrt{p} \pm (\sqrt{n})))$ $e'(0) = \langle u - \lambda \nabla^{\dagger} \overline{E}'(\overline{y}_{u}) - f, v \rangle = 0$ for all VEL2(Zn, R). $=) | u - \lambda \nabla^{\dagger} \overline{\mathcal{D}}'(\nabla u) = f$

This shows that every minimize of Es must satisfy (). Uniqueness: let u, v solve (*). $(v - \lambda \nabla^{\dagger} \overline{\underline{v}}'(\overline{v} u) = f$ $(v - \lambda \nabla^{\dagger} \overline{\underline{v}}'(\overline{v} u) = f)$ $u - v - \lambda \nabla^+ (\overline{\Psi}'(\overline{\nabla} u) - \overline{\Psi}'(\overline{\nabla} v)) = 0$ Take inner product with u-v on both sides (u-v, u-v)

 $\|u-v\|^2 - \lambda \langle \mathcal{D}^{\dagger}(\overline{\mathfrak{T}}'(\overline{\mathfrak{T}}_{u}) - \overline{\mathfrak{T}}'(\overline{\mathfrak{T}}_{v})), u-v \rangle = 0$ integrate by parts $\|u-v\|^2 + \lambda \langle \Xi'(\nabla u) - \Xi'(\nabla v), \nabla u - \nabla v \rangle = 0$ 20 $(\overline{\mathfrak{T}}^{(1+)} - \overline{\mathfrak{T}}^{(s)})(t-s) \ge 0$ by convexity of $\overline{\mathfrak{T}}$ $> = 2 ||u - v||^2 = 0 = 2 |u = v|$

The gradient of E_{Φ}

The gradient of E_{Φ} can be interpreted as

$$\nabla E_{\Phi}(u) = u - \lambda \nabla^{+} \Phi'(\nabla^{-}u) - f. \equiv O$$
Recall $e(t) \equiv E_{\Xi}(u + tv)$

$$e'(v) \equiv \langle u - \lambda \nabla^{+} E'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

$$\frac{d}{dt} \left| \underbrace{E}_{\pm 0}(u+tv) = \langle u-\lambda \nabla^{\dagger} \Xi'(\nabla u) - f, v \rangle$$

 $\frac{d}{dt} \left| \begin{array}{l} g(x+ty) = \nabla g(x) \cdot y \\ f_{t=0} \end{array} \right|$ (hoin rule Definition of DET is $\frac{d}{dt} = (u+tv) = \langle \mathcal{P} E_{\overline{p}}(u), v \rangle$

Gradient Descent

We can minimize E_{Φ} by gradient descent

$$u_{j+1} = u_j - dt \nabla E_{\Phi}(u) = u_j - dt \left(u_j - \lambda \nabla^+ \Phi'(\nabla^- u_j) - f \right)$$

Time step restriction: For stability and convergence of the gradient descent iteration, we have a time step restriction

$$dt \le \frac{2}{1 + 4C_{\Phi}\lambda},$$

where $C_{\Phi} = \max_{t \in \mathbb{R}} \Phi''(t)$. This follows from a Von Nuemann analysis using the DFT.

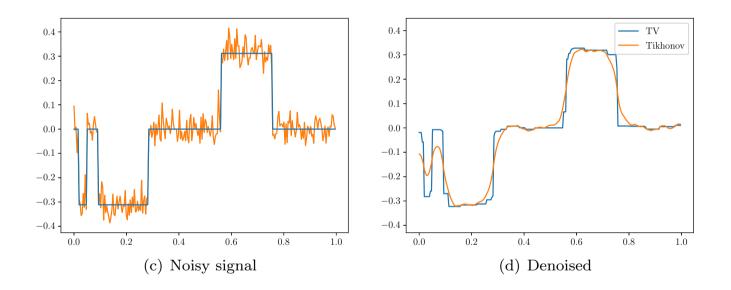
 $U_{j+1} = (1 - dt)U_j + Cdt \lambda Du$ Take DFT on John Sides $D(h_{j_{1}}) = (I - dt)D(u_{j}) + Cdt \lambda D(\Delta u_{j})$ $\mathcal{D}(\Delta f)(k) = (\omega^k + \omega^{-k} - 2)\mathcal{D}f(k) = 2(\cos(2\pi k/n) - 1)\mathcal{D}f(k).$ $D(u_{j+1}) = \left[1 - dt + 2Cdt \lambda (cos(\frac{\partial \pi k}{\partial t}) - i) \right] D(u_j)$ For stability we veed $-1 \leq 1 - dt + 2 C dt \lambda (Cos(\frac{\partial \pi k}{\Delta}) - 1) \leq 1$

 $\begin{array}{c} cos=1 \quad A \leq 1 - dt \quad need \leq 1 \\ \hline cos=-1 \quad A \geq 1 - dt - 4cdt \lambda \geq -1 \end{array}$ $1 - (4C_{\lambda} + i)dt 2 - i$ $(4C\lambda+1)dt \leq 2$ $dt \in \frac{2}{4c\lambda+1}$ (CFL condition Von Neumann Anolysis For the real equation, we approximate

 $\nabla^{+} \overline{\Xi}' (\nabla^{-} u(k)) = \overline{\Xi}' (\nabla^{-} u(k)) - \overline{\Xi}' (\nabla^{-} u(k-1))$ $\approx \overline{\mathbb{P}}''(\overline{\nabla u(ks)})(\overline{\nabla u(k)} - \overline{\nabla u(k-1)})$ $= \overline{\Phi}^{(\prime)}(\nabla u) \Delta u$.

C= max [] []

Total Variation Denoising



Convergence of Gradient Descent

Theorem 5. Let $f \in L^2(\mathbb{Z}_n; \mathbb{R})$ and $\lambda \geq 0$. Let u_j be the iterations of the gradient descent scheme for minimizing E_{Φ} and let u be the solution of (8) (the minimizer of E_{Φ}). Assume that the time step dt satisfies

(9)
$$dt < \frac{2}{1+16C_{\Phi}^2\lambda^2}.$$

Then u_j converges to u as $j \to \infty$, and the difference $u_j - u$ satisifies

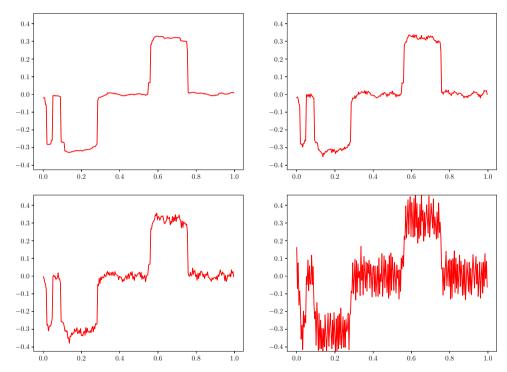
(10)
$$||u_{j+1} - u||^2 \le \mu ||u_j - u||^2$$

where

(11)
$$\mu := (1 - dt)^2 + 16C_{\Phi}^2 dt^2 \lambda^2 < 1.$$

Nonlinear stability at larger time steps

We set $\varepsilon = 10^{-10}$ and the CFL condition is $dt \sim 5 \times 10^{-10}$. Figures are dt = 0.01, 0.05, 0.1, 0.5.



Local nonlinear stability

A heuristic local version of the Von Neumann analysis for ε -regularzied TV shows that the scheme is stable wherever the gradient of u satisfies

$$|\nabla^{-}u|^{3} \ge \frac{4\lambda\varepsilon^{2}dt}{2-dt}.$$

Thus, oscillations cannot grow infinitely large, since the scheme is stable for larger gradients.

Total Variation denoising (.ipynb)