
Math 5587 – Homework 10 (Due Thursday Dec 1)

This assignment requires the use of a mathematical software package. Matlab is preferred
(since Matlab code will be provided), but you are free to use any software package of your
choosing. All computers in Vincent Hall have Matlab, Mathematica, and Maple installed. All
Linux lab computers in the college should have the same software. This includes the labs in
Vincent Hall 5 (when no class is in session) and 270D.

You can also download Matlab on your personal computer with a University license. The
software as well as instructions are available here:

http://cselabs.umn.edu/software/downloadable_software

Before downloading the software, you will need a CSELabs account:

https://wwws.cs.umn.edu/account-management

1. Consider the finite difference scheme
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for the transport equation ut + cux = 0. Show that the scheme is unstable for all choices
of ∆t and ∆x.

2. Consider the Lax-Friedrichs scheme
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for the transport equation ut + cux = 0. Show that the scheme is stable when the CFL
condition
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holds. [Remark: The additional second derivative term is called artificial viscosity, and
makes the scheme look like a scheme for the heat equation ut − ∆x2

2∆t uxx + cux = 0.
The additional diffusion acts to regularize the numerical scheme, yet we still recover
the correct PDE as ∆x → 0 provided the CFL condition holds. This idea is intimately
connected to the method of vanishing viscosity and the theory of viscosity solutions.]

3. Consider the following implicit scheme for the wave equation
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The scheme is obtained by averaging the centered differences for uxx at time steps n− 1
and n+ 1. Show that the scheme is unconditionally stable (i.e., stable for all choices of
∆t and ∆x).
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4. This question was optional last week. If you did not submit it last week, you have the
opportunity to submit with this assignment.

Upwind scheme for conservation law for traffic flow

Consider the following conservation law for traffic flow discussed earlier in the course:

ut + ∂x(u(1− u)) = 0.

Here, u = u(x, t) is the density of traffic on the road at position x and time t. Recall
that v(u) = 1− u is the velocity of traffic and uv(u) = u(1− u) is the traffic flow. Since
u is a density we have 0 ≤ u ≤ 1. In this problem we will explore what can go wrong
with a naive scheme, and how to construct an upwind scheme.

(a) Write down a scheme using forward differences for ut and centered differences for
the x derivative ∂x. Implement the scheme in Matlab and run some simulations.
Is it stable? Try very small values of s = ∆t/∆x, like s = 0.01, to see if you can
make the scheme stable. Print out some plots to justify your answer. [Hint: Use
the code TrafficFlow.m. In the code, un is unj+1 and up is unj−1 (notation is ‘next’
and ‘previous’ grid points). For example, the scheme un+1

j = unj+1u
n
j−1 is coded as

u = un.*up. The boundary conditions are encoded into un and up and correspond
to a constant stream of traffic coming in from the left, and a simulated traffic jam
coming and going on the right.]

(b) You should find in (a) that the scheme is always unstable, for any choice of ∆t. To
fix this, let us expand the x derivative in the PDE to get

ut + (1− u)ux − uux = 0.

The second two terms are similar to what we see in a transport equation, with
speeds c1 = 1 − u and c2 = −u. Since 0 ≤ u ≤ 1, c1 ≥ 0 and c2 ≤ 0. Hence,
an upwind scheme will use backward differences for the ux in the middle term
(1 − u)ux, and forward differences for the ux in the final term −uux. Write this
scheme down, using forward differences for ut. Inspecting your scheme, what do
you think the CFL condition is?

(c) Implement your upwind scheme from part (a) in Matlab. Print out some plots of
the solution at various times. You should see a traffic jam shock wave propagating
backwards through the traffic.

5. Numerically solving the wave equation

(a) Consider the Dirichlet problem for the wave equation

utt = uxx if 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 if t > 0

u(x, 0) = f(x) if 0 < x < 1

ut(x, 0) = g(x) if 0 < x < 1,

 .
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and the finite difference approximation
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 .

where ∆x = 1/(J + 1), s = ∆t2/∆x2, fj = f(j∆x) and gj = g(j∆x). Compute
the solution unj of the finite difference scheme for g ≡ 0, various choices of f(x),
and s = 0.99, s = 1.00, and 1.1. Print out plots showing both stable and unstable
solutions. [Hint: Use the provided Matlab code.]

(b) Modify the provided code to work for homogeneous Neumann boundary conditions
ux(0, t) = ux(π, t) = 0 and a nonzero initial velocity g, and repeat part (a).

(c) Modify the provided code to implement a mixed boundary condition u(1, t) =
ux(1, t) = 0, and/or a Robin-type boundary condition, and repeat part (a).

6. Numerically solving Poisson’s equation

(a) Consider the Dirichlet problem for Poisson’s equation in the box

−∆u(x, y) = f(x, y) if 0 < x < 1, and 0 < y < 1

u(x, y) = g(x, y) if x = 0, x = 1, y = 0 or y = 1

}
.

and the finite difference approximation
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ui,j = gi,j if i = 0, i = J + 1, j = 0 or j = J + 1,

 .

where ∆x = 1/(J + 1), gi,j = g(i∆x, j∆x) and fi,j = f(i∆x, j∆x). Compute
the solution ui,j of the finite difference scheme using Jacobi iterations for various
choices of g and f . Print out plots of some of your solutions. How many Jacobi
iterations does it typically take to converge? How does the number of iterations
depend on the grid size J . [Hint: Use the provided Matlab code.]

(b) Modify the provided code to implement homogeneous Neumann boundary condi-
tions ∂u/∂n = 0, and repeat part (a). [Hint: Use the padarray command in the up-
date step u = padarray(v,[1 1],‘replicate’); instead of u(2:end-1,2:end-1) = v;
to replicate the values of u to the boundary.]

3


