Math 5587 - Homework 11 (Due Thursday Dec 8)

The terms distribution and generalized function are used interchangeably in the homework. Recall a function f is locally integrable if

$$
\int_{a}^{b}|f(x)| d x<\infty \text { for all } a<b
$$

1. (a) Show that $x \delta(x)=0$.
(b) Show that $\delta(2 x)=\frac{1}{2} \delta(x)$.
(c) Let $\delta^{(k)}$ denote the $k^{\text {th }}$ distributional derivative of the Delta function. Show that

$$
\left\langle\delta^{(k)}, \varphi\right\rangle=(-1)^{k} \varphi^{(k)}(0)
$$

for all test functions φ.
2. Let

$$
f_{n}(x)= \begin{cases}\frac{n}{2}, & \text { if }-\frac{1}{n}<x<\frac{1}{n} \\ 0, & \text { otherwise }\end{cases}
$$

Show that $f_{n} \rightharpoonup \delta$ weakly as $n \rightarrow \infty$. Sketch the graph of the functions f_{n}.
3. Let f_{n} be the sequence of generalized functions given by

$$
f_{n}(x)=\frac{n}{2}\left(\delta\left(x+\frac{1}{n}\right)-\delta\left(x-\frac{1}{n}\right)\right) .
$$

Show that

$$
f_{n} \rightharpoonup \delta^{\prime}(x) \text { weakly as } n \rightarrow \infty
$$

4. Let $\varphi \in C_{c}^{\infty}(\mathbb{R})$ and let f be a generalized function. Show that the product rule

$$
(\varphi f)^{\prime}=\varphi^{\prime} f+\varphi f^{\prime}
$$

holds in the distributional sense.
5. In this question, you will construct a test function that is positive on the interval $(-1,1)$ and vanishes outside of this interval. Recall a test function must be infinitely differentiable and compactly supported.
Define

$$
\psi(x)= \begin{cases}0, & x \leq 0 \\ e^{-\frac{1}{x^{2}}}, & x>0\end{cases}
$$

(a) Use induction to show that for $x>0$ all derivatives of ψ of all orders are of the form

$$
p\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}
$$

where p is a polynomial. [The polynomial p will be different for each derivative. You don't need to find p explicitly.]
(b) For any polynomial p show that

$$
\lim _{x \rightarrow 0^{+}} p\left(\frac{1}{x}\right) e^{-\frac{1}{x^{2}}}=0
$$

[Hint: By setting $y=1 / x$, you may show instead that

$$
\lim _{y \rightarrow \infty} p(y) e^{-y^{2}}=0
$$

To prove this, first show that for any positive integer $k, \lim _{y \rightarrow \infty} y^{k} e^{-y^{2}}=0$. There are many ways to do this. One way is to use the Taylor series for e^{x} to show that $e^{x} \geq x^{k} / k!$ for any $x>0$. From this you can deduce that $e^{-y^{2}} \leq k!/ y^{2 k}$.]
(c) Conclude from (b) that ψ is infinitely differentiable.
(d) Define

$$
\varphi(x)=\psi(x+1) \psi(1-x) .
$$

Show that φ is infinitely differentiable, positive in $(-1,1)$ and vanishes for $x \notin$ $(-1,1)$. [Hint: The product and composition of smooth functions is smooth.]
(e) Fix $x_{0} \in \mathbb{R}$ and $\varepsilon>0$. Use part (d) to find a test function g that is positive on the interval ($x_{0}-\varepsilon, x_{0}+\varepsilon$) and vanishes outside of this interval. [Hint: Scale and translate φ.]
6. (a) Show that $f(x)=\frac{1}{2} \log \left(x^{2}\right)$ is locally integrable, and thus defines a generalized function.
(b) Show that the ordinary derivative $f^{\prime}(x)=\frac{1}{x}$ is not locally integrable, and is therefore not a generalized function.
(c) Show that the distributional derivative of f is the distribution

$$
\left\langle f^{\prime}, \varphi\right\rangle=-\left\langle f, \varphi^{\prime}\right\rangle=\text { P.V. } \int_{-\infty}^{\infty} \frac{\varphi(x)}{x} d x
$$

[Here, P.V. stands for the Cauchy principle value of the integral, and is defined as

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{\varphi(x)}{x} d x:=\lim _{\varepsilon \rightarrow 0} \int_{|x|>\varepsilon} \frac{\varphi(x)}{x} d x,
$$

where

$$
\int_{|x|>\varepsilon} \frac{\varphi(x)}{x} d x=\int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} d x+\int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} d x .
$$

]
(d) Show that the second distributional derivative of f is the distribution

$$
\left\langle f^{\prime \prime}, \varphi\right\rangle=\left\langle f, \varphi^{\prime \prime}\right\rangle=\text { P.V. } \int_{-\infty}^{\infty} \frac{\varphi(0)-\varphi(x)}{x^{2}} d x
$$

