Math 5587 - Homework 12 (Due Thursday Dec 15)

1. Find the Green's function for the tilted half-space

$$
D=\{(x, y, z): a x+b y+c z>0\} .
$$

[Hint: Use the Green's function for the halfspace $\{z>0\}$ and a change of variables.]
2. Find the Green's function for the half ball

$$
D=\left\{(x, y, z): x^{2}+y^{2}+z^{2}<a^{2} \text { and } z>0\right\} .
$$

[Hint: Reflect the solution for the whole ball across the plane $z=0$.]
3. Consider the two dimensional disk

$$
D=\left\{(x, y): x^{2}+y^{2}<a^{2}\right\} .
$$

Show that the Green's function for the disk is

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \log \left(\left\|\mathbf{x}-\mathbf{x}_{0}\right\|\right)-\frac{1}{2 \pi} \log \left(\frac{\left\|\mathbf{x}_{0}\right\|}{a}\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\|\right) .
$$

where $\mathbf{x}_{0}^{*}=\frac{a^{2} \mathbf{x}_{0}}{\left\|\mathbf{x}_{0}\right\|^{2}}$.
4. Use problem 3 to recover the two dimensional version of Poisson's formula for the ball that we derived in class using separation of variables.

