MATH 5587 – HOMEWORK 2 (DUE THURSDAY SEPT 15)

- 1. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous.
 - (a) $u_t u_{xx} + x = 0.$
 - (b) $(x+y)u_{xy} + 2xu_y = x^2$.
 - (c) $u_{xx} = e^u$.
 - (d) $u_{txy} u_{xx}u_{yy} + u_x = x^3$.
 - (e) $u_t + u_{xxxxxx} \sqrt{1+u^2} = 0.$
 - (f) $u_t + u_x + u_y + u/xy = 0.$
- 2. Let u_* be a solution of the inhomogeneous linear equation $L[u_*] = g$. Show that every solution of L[u] = g is of the form $u = u_* + v$, where v is a solution of the homogeneous linear equation L[v] = 0.
- 3. Find the solution to the initial value problem $u_t + u_x = 0$ satisfying $u(x, 1) = x/(1+x^2)$.
- 4. Show that the only continuously differentiable solutions of $xu_x + yu_y = 0$ on the entire plane \mathbb{R}^2 are constant functions. [Hint: Show that for any fixed $(x, y) \in \mathbb{R}^2$, the function g(t) = u(xt, yt) is constant in t.]
- 5. (a) Find a solution of $u_x u_y = 1$ on \mathbb{R}^2 of the form u(x, y) = f(x) + g(y).
 - (b) Find two different solutions of $u_x u_y = u$ in the domain $x \ge 0$ and $y \ge 0$ that satisfy u(x,0) = 0 and u(0,y) = 0 for all $x \ge 0$ and $y \ge 0$. [Hint: One is trivial. For the other, look for a solution in the separable form u(x,y) = f(x)g(y).]
- 6. (a) Write down a formula for the general solution to the nonlinear PDE $u_t + u_x + u^2 = 0$.
 - (b) Show that if the initial data f(x) = u(x, 0) is nonnegative and bounded $0 \le f(x) \le M$, then the solution exists for all t > 0, and $u(x, t) \to 0$ as $t \to \infty$.
 - (c) On the other hand, if the initial data is negative at some x, show that the solution blows up in finite time: That is $\lim_{t\to\tau^-} u(y,t) = -\infty$ for some $\tau > 0$ and $y \in \mathbb{R}$.
 - (d) Find a formula for the earliest blow-up time $\tau_* > 0$.