Math 5587 - Homework 2 (Due Thursday Sept 15)

1. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous.
(a) $u_{t}-u_{x x}+x=0$.
(b) $(x+y) u_{x y}+2 x u_{y}=x^{2}$.
(c) $u_{x x}=e^{u}$.
(d) $u_{t x y}-u_{x x} u_{y y}+u_{x}=x^{3}$.
(e) $u_{t}+u_{x x x x x x}-\sqrt{1+u^{2}}=0$.
(f) $u_{t}+u_{x}+u_{y}+u / x y=0$.
2. Let u_{*} be a solution of the inhomogeneous linear equation $L\left[u_{*}\right]=g$. Show that every solution of $L[u]=g$ is of the form $u=u_{*}+v$, where v is a solution of the homogeneous linear equation $L[v]=0$.
3. Find the solution to the initial value problem $u_{t}+u_{x}=0$ satisfying $u(x, 1)=x /\left(1+x^{2}\right)$.
4. Show that the only continuously differentiable solutions of $x u_{x}+y u_{y}=0$ on the entire plane \mathbb{R}^{2} are constant functions. [Hint: Show that for any fixed $(x, y) \in \mathbb{R}^{2}$, the function $g(t)=u(x t, y t)$ is constant in t.]
5. (a) Find a solution of $u_{x} u_{y}=1$ on \mathbb{R}^{2} of the form $u(x, y)=f(x)+g(y)$.
(b) Find two different solutions of $u_{x} u_{y}=u$ in the domain $x \geq 0$ and $y \geq 0$ that satisfy $u(x, 0)=0$ and $u(0, y)=0$ for all $x \geq 0$ and $y \geq 0$. [Hint: One is trivial. For the other, look for a solution in the separable form $u(x, y)=f(x) g(y)$.]
6. (a) Write down a formula for the general solution to the nonlinear PDE $u_{t}+u_{x}+u^{2}=0$.
(b) Show that if the initial data $f(x)=u(x, 0)$ is nonnegative and bounded $0 \leq f(x) \leq$ M, then the solution exists for all $t>0$, and $u(x, t) \rightarrow 0$ as $t \rightarrow \infty$.
(c) On the other hand, if the initial data is negative at some x, show that the solution blows up in finite time: That is $\lim _{t \rightarrow \tau^{-}} u(y, t)=-\infty$ for some $\tau>0$ and $y \in \mathbb{R}$.
(d) Find a formula for the earliest blow-up time $\tau_{*}>0$.
