1. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous.

(a) \(u_t - u_{xx} + x = 0 \). 2nd order, inhomogeneous linear

(b) \((x + y)u_{xy} + 2xu_y = x^2 \). 2nd order, inhomogeneous linear

(c) \(u_{xx} = e^u \). 2nd order, nonlinear

(d) \(u_{txy} - u_{xxx}u_{yy} + u_x = x^3 \). 3rd order, nonlinear

(e) \(u_t + u_{xxxxx} - \sqrt{1 + u^2} = 0 \). 6th order, nonlinear

(f) \(u_t + u_x + u_y + u/xy = 0 \). 1st order, homogeneous linear

2. Let \(u_* \) be a solution of the inhomogeneous linear equation \(L[u_*] = g \). Show that every solution of \(L[u] = g \) is of the form \(u = u_* + v \), where \(v \) is a solution of the homogeneous linear equation \(L[v] = 0 \).

Solution. Let \(u \) be a solution of \(L[u] = g \) and set \(v := u - u_* \). Since \(L \) is linear
\[
L[v] = L[u - u_*] = L[u] - L[u_*] = g - g = 0.
\]

3. Find the solution to the initial value problem \(u_t + u_x = 0 \) satisfying \(u(x, 1) = x/(1 + x^2) \).

Solution. The left hand side of the PDE is the directional derivative in the direction \((1, 1)\) in the \((x, t)\) plane. Hence, for fixed \(x_0\) consider the function \(g(t) = u(x_0 + t, t) \). Then
\[
g'(t) = u_t(x_0 + t, t) + u_x(x_0 + t, t) = 0,
\]
and so \(g \) is constant. Therefore
\[
u(x_0 + t, t) = g(t) = g(1) = u(x_0 + 1, 1) = \frac{x_0 + 1}{1 + (x_0 + 1)^2}.
\]
Now set \(x = x_0 + t \), so \(x_0 = x - t \) to find that
\[
u(x, t) = \frac{x - t + 1}{1 + (x - t + 1)^2}.
\]

4. Show that the only continuously differentiable solutions of \(xu_x + yu_y = 0 \) on the entire plane \(\mathbb{R}^2 \) are constant functions. [Hint: Show that for any fixed \((x, y) \in \mathbb{R}^2\), the function \(g(t) = u(xt, yt) \) is constant in \(t \).]
Solution. Taking the hint, we have
\[g'(t) = xu_x(xt, yt) + yu_y(xt, yt) = 0. \]
Hence \(g \) is constant and
\[u(0, 0) = g(0) = g(1) = u(x, y). \]
Since this holds for any \((x, y)\), we have that \(u \) is constant and equal to \(u(0, 0) \) everywhere in \(\mathbb{R}^2 \).

5. (a) Find a solution of \(u_xu_y = 1 \) on \(\mathbb{R}^2 \) of the form \(u(x, y) = f(x) + g(y) \).

Solution. Using the form \(u(x, y) = f(x) + g(y) \) we have \(u_x(x, y) = f'(x) \) and \(u_y(x, y) = g'(y) \). Therefore
\[f'(x)g'(y) = u_x(x, y)u_y(x, y) = 1. \]
Writing this in the form \(f'(x) = 1/g'(y) \), we see that both sides must be constant. In fact, we can simply differentiate both sides in \(x \) to find \(f''(x) = 0 \), hence \(f' \) is constant. Therefore there exists \(\rho \neq 0 \) such that
\[f'(x) = \rho = \frac{1}{g'(y)}. \]
It follows that \(f(x) = \rho x + a \) and \(g(y) = \frac{1}{\rho} y + b \). The general solution in the form \(u(x, y) = f(x) + g(y) \) is
\[u(x, y) = \rho x + \frac{1}{\rho} y + C, \]
where \(C = a + b \) and \(\rho \neq 0 \) are arbitrary constants. It is enough to find just one solution to get full credit.

(b) Find two different solutions of \(u_xu_y = u \) in the domain \(x \geq 0 \) and \(y \geq 0 \) that satisfy \(u(x, 0) = 0 \) and \(u(0, y) = 0 \) for all \(x \geq 0 \) and \(y \geq 0 \). [Hint: One is trivial. For the other, look for a solution in the separable form \(u(x, y) = f(x)g(y) \).]

Solution. The trivial solution is, by inspection, \(u(x, y) = 0 \). For the other, we look for a solution in the form \(u(x, y) = f(x)g(y) \). Then
\[f'(x)g(y)f(x)g'(y) = u_x(x,y)u_y(x,y) = u(x,y) = f(x)g(y). \]
Therefore
\[f'(x)g'(y) = 1. \]
This is the same equation as in part (a). Therefore
\[f(x) = \rho x + a \quad \text{and} \quad g(y) = \frac{1}{\rho} y + b, \]
and so the general solution is
\[u(x, y) = f(x)g(y) = xy + \rho bx + \frac{a}{\rho}y + ab. \]

Since \(u(x, 0) = 0 \) we must have \(\rho bx + ab = 0 \) for all \(x \). Differentiating in \(x \) yields \(\rho b = 0 \). Since \(\rho \neq 0 \) we must have \(b = 0 \). Using the other boundary condition \(u(0, y) = 0 \) yields \(\frac{a}{\rho}y = 0 \) for all \(y \). Hence \(a = 0 \) as well, and we get the solution \(u(x, y) = xy \). \(\square \)

6. (a) Write down a formula for the general solution to the nonlinear PDE \(u_t + u_x + u^2 = 0 \).

Solution. Let \(f(x) = u(x_0, 0) \) and fix \(x_0 \). As for question 3, the left hand side involves the directional derivative of \(u \) in the direction \((1, 1)\). Hence, we define, as in problem 3, \(g(t) = u(x_0 + t, t) \), and compute
\[g'(t) = u_t(x_0 + t, t) + u_x(x_0 + t, t) = -u(x_0 + t, t)^2 = -g(t)^2. \]
Thus \(g'(t) = -g(t)^2 \). We can solve this ODE via separation of variables as follows:
\[\frac{d}{dt} \left(\frac{1}{g(t)} \right) = -\frac{g'(t)}{g(t)^2} = 1. \]
Therefore \(\frac{1}{g(t)} = t + C \),
\[g(t) = \frac{1}{t + C}. \]
for an arbitrary constant \(C \). Since
\[\frac{1}{C} = g(0) = u(x_0, 0) = f(x_0), \]
we have \(C = 1/f(x_0) \). Therefore
\[u(x_0 + t, t) = g(t) = \frac{1}{t + \frac{1}{f(x_0)}} = \frac{f(x_0)}{tf(x_0) + 1}. \] (1)
We want the solution at \((x, t)\) so set \(x_0 + t = x\) (or \(x_0 = x - t \)) to find that
\[u(x, t) = \frac{f(x - t)}{tf(x - t) + 1}. \]
This is the general solution, for an arbitrary function \(f(x) = u(x, 0) \). \(\square \)

(b) Show that if the initial data \(f(x) = u(x, 0) \) is nonnegative and bounded \(0 \leq f(x) \leq M \), then the solution exists for all \(t > 0 \), and \(u(x, t) \to 0 \) as \(t \to \infty \).
Solution. The denominator vanishes when \(t = -f(x - t)^{-1} \leq 0 \), so the solution \(u(x, t) \) exists for all \(t > 0 \). Furthermore, if \(f(x - t) = 0 \) then \(u(x, t) = 0 \). If \(f(x - t) > 0 \) then
\[
u(x, t) = \frac{1}{t + \frac{1}{f(x-t)}} \leq \frac{1}{t}.
\]
Therefore
\[
0 \leq u(x, t) \leq \frac{1}{t} \quad \text{for all } t > 0.
\]
It follows that \(\lim_{t \to \infty} u(x, t) = 0 \) (uniformly in \(x \) in fact).

(c) On the other hand, if the initial data \(f(x) \) is negative at some \(x \), show that the solution blows up in finite time: That is \(\lim_{t \to \tau^-} u(y, t) = -\infty \) for some \(\tau > 0 \) and \(y \in \mathbb{R} \).

Solution. Suppose that \(f(x_0) < 0 \) for some \(x_0 \). Let us write the solution in the form (1)
\[
u(x_0 + t, t) = \frac{f(x_0)}{tf(x_0) + 1} = \frac{1}{t - \tau},
\]
where \(\tau = -f(x_0)^{-1} > 0 \). The solution clearly blows up at time \(t = \tau \) and \(y = x_0 + \tau \).

(d) Find a formula for the earliest blow-up time \(\tau_* > 0 \).

Solution. By part (c), the solution blows up at \(\tau = -f(x)^{-1} \), provided \(f(x) < 0 \). Since \(f \) may be negative at many different \(x \), the earliest blow-up time is the minimum of all blow-up times, hence
\[
\tau_* = \min\{-f(x)^{-1} : x \in \mathbb{R} \text{ and } f(x) < 0\}.
\]
In other words, the larger the initial data \(f(x) \) (negatively), the sooner the solution will blow up.