## Math 5587 - Homework 3 (Due Thursday Sept 22)

1. Solve $u_{t t}=c^{2} u_{x x}$ with $u(x, 0)=x^{2}$ and $u_{t}(x, 0)=\cos (x)$.
2. Find the solution of $u_{x x}-3 u_{x t}-4 u_{t t}=0$ with $u(x, 0)=e^{x}$ and $u_{t}(x, 0)=0$. [Hint: Factor the operator into the form $\left(\partial_{x}-4 \partial_{t}\right)\left(\partial_{x}+\partial_{t}\right) u=0$, and proceed as we did in class to derive d'Alembert's formula.]
3. The hammer blow: Consider the wave equation $u_{t t}=u_{x x}$ on the entire real line $-\infty<x<\infty$ with zero initial position $u(x, 0)=0$ and initial velocity $u_{t}(x, 0)=g(x)$, where $g(x)=1$ for $|x|<1$ and $g(x)=0$ for $|x| \geq 1$. Sketch the solution at time instants $t=1 / 2,1,3 / 2,2$ and $t=5 / 2$. What is the maximum displacement $\max _{x} u(x, t)$ ?
4. Suppose that $u(x, t)$ solves the wave equation $u_{t t}=u_{x x}$ for $0<x<\ell$ and $t \geq 0$ with Robin boundary conditions

$$
u(0, t)-u_{x}(0, t)=0 \quad \text { and } \quad u(\ell, t)+u_{x}(\ell, t)=0 .
$$

(a) Show that the energy

$$
E(t)=\frac{1}{2} \int_{0}^{\ell} u_{t}(x, t)^{2}+u_{x}(x, t)^{2} d x+\frac{1}{2} u(0, t)^{2}+\frac{1}{2} u(\ell, t)^{2}
$$

is conserved (i.e., $E^{\prime}(t)=0$ ).
(b) Give a physical explanation for the additional two terms in $E(t)$. [Recall the physical explanation of the Robin conditions for the wave equation from lecture 2.]
5. 'Blow-up' for the heat equation.
(a) Show that the function

$$
u(x, t)=\frac{1}{\sqrt{1-t}} \exp \left(\frac{x^{2}}{4(1-t)}\right)
$$

is a solution of the heat equation

$$
u_{t}-u_{x x}=0 \quad \text { for }-\infty<x<\infty \text { and } 0<t<1
$$

(b) Sketch the functions $t \mapsto u(0, t)$ and $x \mapsto u(x, 1 / 2)$.
(c) Can you give a physical explanation for the 'blow-up' observed at $t=1$ ?
6. (a) Solve the diffusion equation $u_{t}=u_{x x}$ on the real line $-\infty<x<\infty$ with initial condition $u(x, 0)=x^{2}$ without using the fundamental solution. [Hint: Note that $u_{x x x}$ satisfies the same diffusion equation with zero initial condition. Therefore $u_{x x x} \equiv 0$ and we find that $u(x, t)=A(t) x^{2}+B(t) x+C(t)$. Solve for $A(t), B(t)$ and $C(t)$.]
(b) Use your answer to part (a) to deduce the value of

$$
\int_{-\infty}^{\infty} x^{2} e^{-x^{2}} d x
$$

[Hint: Write an expression for $u(0,1)$ using the fundamental solution and make a substitution in the integral.]

