
Math 5587 – Homework 4 (Due Thursday Sept 29)

1. For a solution u(x, t) of the wave equation

utt − uxx = 0,

the energy density is defined as e(x, t) = (u2t + u2x)/2 and the momentum density is
p(x, t) = utux.

(a) Show that et = px and pt = ex.

(b) Show that both e and p also satisfy the wave equation.

2. Let u(x, t) and v(x, t) be functions such that

ut − kuxx ≤ vt − kvxx

on the rectangular strip UT = (a, b)×(0, T ]. Prove the following comparison principle:

If u ≤ v on Γ then u ≤ v everywhere in UT .

Recall Γ is the parabolic boundary of UT , i.e., the sides x = a and x = b, and base t = 0.
[Hint: Apply the maximum principle to w := u− v.]

3. Consider the nonlinear heat equation

ut − kuxx + bu2x = 0 for −∞ < x <∞ and t > 0,

subject to an initial condition u(x, 0) = f(x). This type of PDE arises in stochastic
optimal control theory. In this question you will derive a representation formula for the
solution u(x, t).

(a) Define the Cole-Hopf transformation w(x, t) = e−
b
k
u(x,t). Show that w is a solution

of the linear heat equation
wt − kwxx = 0.

(b) Use the fundamental solution of the heat equation to solve for w(x, t).

(c) Invert the Cole-Hopf transformation to find a formula for u.

4. Consider the heat equation

ut − kuxx = 0 for 0 < x < ` and t > 0,

subject to homogeneous Dirichlet boundary conditions

u(0, t) = 0 = u(`, t) for t > 0,

and initial condition
u(x, 0) = f(x) for 0 < x < `.

We assume that f is nonnegative, that is, f(x) ≥ 0 for all x.



(a) Use the comparison principle (Problem 2), or the maximum principle, to show that
u(x, t) ≥ 0 for all x and t.

(b) Show that ux(0, t) ≥ 0 and ux(`, t) ≤ 0 for all t. [Hint: Use the definition of these
partial derivatives and (a).]

(c) Show that the total heat

H(t) =

∫ `

0
u(x, t) dx

is decreasing in t. That is, show that H ′(t) ≤ 0. Give a short explanation of why
heat is decreasing and not conserved.

(d) Show that for each 0 < x < `

lim
t→∞

u(x, t) = 0.

That is, all of the heat in the rod eventually dissipates. [Hint: Define

v(x, t) := Φ(x, t+ 1) =
1√

4πk(t+ 1)
exp

(
− x2

4k(t+ 1)

)
,

where Φ is the fundamental solution of the heat equation. Recall that v satisfies the
heat equation vt−kvxx = 0 for t > −1. Explain how to use the comparison principle
from problem 2 to show that u ≤ Cv for an appropriate constant C depending on
f and k. Complete the proof from here.]

5. Maximum principle: Consider the heat equation

(H)

{
ut − uxx = 0, −∞ < x <∞, t > 0

u(x, 0) = ϕ(x), −∞ < x <∞.

As it turns out, there are infinitely many solutions u of the above heat equation. All
but one solution are “non-physical” and grow exponentially fast as x → ±∞. In this
question, you will show that if ϕ is bounded, then there is a unique bounded solution
u(x, t). The proof involves the maximum principle that we dicussed in class for bounded
domains.

Throughout the question let u be a bounded solution of (H); this means there exists
C > 0 such that |u(x, t)| ≤ C for all (x, t).

(a) Show that w(x, t) = x2 + 2t solves the heat equation wt = wxx.
(b) For every ε > 0 show that

u(x, t) ≤ εw(x, t) +M for all x ∈ R and t > 0,

where M > 0 is any number satisfying ϕ(x) ≤ M for all x ∈ R. [Hint: For N > 0
let RN denote the rectangle

RN = [−N,N ]× [0, N ] = {(x, t) : −N ≤ x ≤ N and 0 ≤ t ≤ N}.

Show that there exists N > 0 such that for all N > N , u ≤ εw + M on the sides
x = −N and x = N , and base t = 0 of RN . Then apply the comparison principle
from Problem 2.]
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(c) Let M > 0 such that ϕ(x) ≤M for all x ∈ R. Show that u ≤M .

(d) Show that there is at most one bounded solution u of (H) when ϕ is bounded. [Hint:
Take two bounded solutions u, v and consider w := u − v. Then choose M = 0 to
show that u ≤ v. Complete the proof from here.]

It is possible to prove a stronger result; namely that there is at most one solution u of
(H) satisfying the exponential growth estimate

u(x, t) ≤ Aeax2

for constants A > 0 and a > 0. The proof is similar to this exercise, except that w has
a different form (similar to HW3 #5). This means that the “non-physical” solutions all
grow faster than Aeax2 as x→ ±∞.

6. Consider the heat equation on the half line

ut − kuxx = 0 for x > 0 and t > 0,

with homogeneous Neumann boundary conditions ux(0, t) = 0 for all t > 0, and intial
condition u(x, 0) = f(x) for x > 0. Use the method of even extensions, as outlined in
the notes, to show that the solution u(x, t) is given by

u(x, t) =
1√

4πkt

∫ ∞
0

(
e−(x−y)

2/4kt + e−(x+y)2/4kt
)
f(y) dy.
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