Math 5587 - Homework 4 (Due Thursday Sept 29)

1. For a solution $u(x, t)$ of the wave equation

$$
u_{t t}-u_{x x}=0,
$$

the energy density is defined as $e(x, t)=\left(u_{t}^{2}+u_{x}^{2}\right) / 2$ and the momentum density is $p(x, t)=u_{t} u_{x}$.
(a) Show that $e_{t}=p_{x}$ and $p_{t}=e_{x}$.
(b) Show that both e and p also satisfy the wave equation.
2. Let $u(x, t)$ and $v(x, t)$ be functions such that

$$
u_{t}-k u_{x x} \leq v_{t}-k v_{x x}
$$

on the rectangular strip $U_{T}=(a, b) \times(0, T]$. Prove the following comparison principle:

$$
\text { If } u \leq v \text { on } \Gamma \text { then } u \leq v \text { everywhere in } U_{T} \text {. }
$$

Recall Γ is the parabolic boundary of U_{T}, i.e., the sides $x=a$ and $x=b$, and base $t=0$. [Hint: Apply the maximum principle to $w:=u-v$.]
3. Consider the nonlinear heat equation

$$
u_{t}-k u_{x x}+b u_{x}^{2}=0 \quad \text { for } \quad-\infty<x<\infty \text { and } t>0
$$

subject to an initial condition $u(x, 0)=f(x)$. This type of PDE arises in stochastic optimal control theory. In this question you will derive a representation formula for the solution $u(x, t)$.
(a) Define the Cole-Hopf transformation $w(x, t)=e^{-\frac{b}{k} u(x, t)}$. Show that w is a solution of the linear heat equation

$$
w_{t}-k w_{x x}=0
$$

(b) Use the fundamental solution of the heat equation to solve for $w(x, t)$.
(c) Invert the Cole-Hopf transformation to find a formula for u.
4. Consider the heat equation

$$
u_{t}-k u_{x x}=0 \quad \text { for } 0<x<\ell \text { and } t>0,
$$

subject to homogeneous Dirichlet boundary conditions

$$
u(0, t)=0=u(\ell, t) \quad \text { for } t>0
$$

and initial condition

$$
u(x, 0)=f(x) \quad \text { for } 0<x<\ell
$$

We assume that f is nonnegative, that is, $f(x) \geq 0$ for all x.
(a) Use the comparison principle (Problem 2), or the maximum principle, to show that $u(x, t) \geq 0$ for all x and t.
(b) Show that $u_{x}(0, t) \geq 0$ and $u_{x}(\ell, t) \leq 0$ for all t. [Hint: Use the definition of these partial derivatives and (a).]
(c) Show that the total heat

$$
H(t)=\int_{0}^{\ell} u(x, t) d x
$$

is decreasing in t. That is, show that $H^{\prime}(t) \leq 0$. Give a short explanation of why heat is decreasing and not conserved.
(d) Show that for each $0<x<\ell$

$$
\lim _{t \rightarrow \infty} u(x, t)=0 .
$$

That is, all of the heat in the rod eventually dissipates. [Hint: Define

$$
v(x, t):=\Phi(x, t+1)=\frac{1}{\sqrt{4 \pi k(t+1)}} \exp \left(-\frac{x^{2}}{4 k(t+1)}\right)
$$

where Φ is the fundamental solution of the heat equation. Recall that v satisfies the heat equation $v_{t}-k v_{x x}=0$ for $t>-1$. Explain how to use the comparison principle from problem 2 to show that $u \leq C v$ for an appropriate constant C depending on f and k. Complete the proof from here.]
5. Maximum principle: Consider the heat equation

$$
\text { (H) }\left\{\begin{aligned}
u_{t}-u_{x x} & =0, & & -\infty<x<\infty, t>0 \\
u(x, 0) & =\varphi(x), & & -\infty<x<\infty .
\end{aligned}\right.
$$

As it turns out, there are infinitely many solutions u of the above heat equation. All but one solution are "non-physical" and grow exponentially fast as $x \rightarrow \pm \infty$. In this question, you will show that if φ is bounded, then there is a unique bounded solution $u(x, t)$. The proof involves the maximum principle that we dicussed in class for bounded domains.
Throughout the question let u be a bounded solution of (H); this means there exists $C>0$ such that $|u(x, t)| \leq C$ for all (x, t).
(a) Show that $w(x, t)=x^{2}+2 t$ solves the heat equation $w_{t}=w_{x x}$.
(b) For every $\varepsilon>0$ show that

$$
u(x, t) \leq \varepsilon w(x, t)+M \quad \text { for all } x \in \mathbb{R} \text { and } t>0,
$$

where $M>0$ is any number satisfying $\varphi(x) \leq M$ for all $x \in \mathbb{R}$. [Hint: For $N>0$ let R_{N} denote the rectangle

$$
R_{N}=[-N, N] \times[0, N]=\{(x, t):-N \leq x \leq N \text { and } 0 \leq t \leq N\} .
$$

Show that there exists $\bar{N}>0$ such that for all $N>\bar{N}, u \leq \varepsilon w+M$ on the sides $x=-N$ and $x=N$, and base $t=0$ of R_{N}. Then apply the comparison principle from Problem 2.]
(c) Let $M>0$ such that $\varphi(x) \leq M$ for all $x \in \mathbb{R}$. Show that $u \leq M$.
(d) Show that there is at most one bounded solution u of (H) when φ is bounded. [Hint: Take two bounded solutions u, v and consider $w:=u-v$. Then choose $M=0$ to show that $u \leq v$. Complete the proof from here.]

It is possible to prove a stronger result; namely that there is at most one solution u of (H) satisfying the exponential growth estimate

$$
u(x, t) \leq A e^{a x^{2}}
$$

for constants $A>0$ and $a>0$. The proof is similar to this exercise, except that w has a different form (similar to HW3 \#5). This means that the "non-physical" solutions all grow faster than $A e^{a x^{2}}$ as $x \rightarrow \pm \infty$.
6. Consider the heat equation on the half line

$$
u_{t}-k u_{x x}=0 \quad \text { for } \quad x>0 \text { and } t>0,
$$

with homogeneous Neumann boundary conditions $u_{x}(0, t)=0$ for all $t>0$, and intial condition $u(x, 0)=f(x)$ for $x>0$. Use the method of even extensions, as outlined in the notes, to show that the solution $u(x, t)$ is given by

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left(e^{-(x-y)^{2} / 4 k t}+e^{-(x+y)^{2} / 4 k t}\right) f(y) d y
$$

