MATH 5587 — HOMEWORK 4 (DUE THURSDAY SEPT 29)

1. For a solution u(x,t) of the wave equation
Ut — Ugy = 0,

the energy density is defined as e(x,t) = (u? + u2)/2 and the momentum density is
p(x,t) = upuy.

(a) Show that e; = p, and p; = e,.
(b) Show that both e and p also satisfy the wave equation.

2. Let u(z,t) and v(z,t) be functions such that
up — kgy < vy — kvgg

on the rectangular strip Ur = (a,b) x (0,7T]. Prove the following comparison principle:
If u<wvonl then u < v everywhere in Up.

Recall T is the parabolic boundary of Ur, i.e., the sides x = a¢ and « = b, and base t = 0.
[Hint: Apply the maximum principle to w : = u — v.|

3. Consider the nonlinear heat equation
utfk:umqtbui:() for —co<z<ooandt >0,

subject to an initial condition u(z,0) = f(x). This type of PDE arises in stochastic
optimal control theory. In this question you will derive a representation formula for the
solution u(z,t).
(a) Define the Cole-Hopf transformation w(z,t) = ekl
of the linear heat equation

©.t)  Show that w is a solution

w; — kwgz = 0.

(b) Use the fundamental solution of the heat equation to solve for w(x,t).

(c) Invert the Cole-Hopf transformation to find a formula for .
4. Consider the heat equation
U — kg, =0 for0<xz<fandt>D0,
subject to homogeneous Dirichlet boundary conditions
u(0,t) =0=wu(l,t) fort>0,

and initial condition

u(z,0) = f(z) for0<az </

We assume that f is nonnegative, that is, f(z) > 0 for all .



(a) Use the comparison principle (Problem 2), or the maximum principle, to show that
u(z,t) > 0 for all z and ¢.

(b) Show that u,(0,t) > 0 and uy(¢,t) < 0 for all ¢. [Hint: Use the definition of these
partial derivatives and (a).]

(c) Show that the total heat
0
H{(t) :/ u(x,t) dx
0

is decreasing in ¢. That is, show that H'(¢) < 0. Give a short explanation of why
heat is decreasing and not conserved.

(d) Show that for each 0 < z < ¢

lim wu(z,t) = 0.

t—o00

That is, all of the heat in the rod eventually dissipates. [Hint: Define

1 @’
v(z,t) =Pz, t+1) = mexp <_4k’(t+1)> )

where @ is the fundamental solution of the heat equation. Recall that v satisfies the
heat equation vy — kv, = 0 for ¢t > —1. Explain how to use the comparison principle
from problem 2 to show that v < C'v for an appropriate constant C' depending on
f and k. Complete the proof from here.|

5. Maximum principle: Consider the heat equation

() Up — Ugy = 0, —oco<r<oo, t>0
u(z,0) = p(x), —oo <z <o0.
As it turns out, there are infinitely many solutions u of the above heat equation. All
but one solution are “non-physical” and grow exponentially fast as x — Foo. In this
question, you will show that if ¢ is bounded, then there is a unique bounded solution

u(x,t). The proof involves the maximum principle that we dicussed in class for bounded
domains.

Throughout the question let u be a bounded solution of (H); this means there exists
C > 0 such that |u(z,t)| < C for all (x,t).

(a) Show that w(z,t) = 22 + 2t solves the heat equation w; = wy,.
(b) For every € > 0 show that
u(z,t) <ew(x,t)+ M foralx € R and ¢t >0,

where M > 0 is any number satisfying ¢(x) < M for all € R. [Hint: For N > 0
let Ry denote the rectangle

Ry =[-N,N] x [0,N] ={(z,t) : =N <2z <N and 0 <t < N}.

Show that there exists N > 0 such that for all N > N, u < ew + M on the sides
x=—N and x = N, and base t = 0 of Ry. Then apply the comparison principle
from Problem 2.]



(¢) Let M > 0 such that p(z) < M for all x € R. Show that u < M.

(d) Show that there is at most one bounded solution u of (H) when ¢ is bounded. [Hint:
Take two bounded solutions u, v and consider w := u — v. Then choose M = 0 to
show that u < v. Complete the proof from here.|

It is possible to prove a stronger result; namely that there is at most one solution u of
(H) satisfying the exponential growth estimate

u(x,t) < Ae®

for constants A > 0 and a > 0. The proof is similar to this exercise, except that w has
a different form (similar to HW3 #5). This means that the “non-physical” solutions all
grow faster than Ae®” as x — +oo.

. Consider the heat equation on the half line
U — kg, =0 for x>0andt >0,

with homogeneous Neumann boundary conditions u,(0,¢) = 0 for all ¢ > 0, and intial
condition u(z,0) = f(z) for z > 0. Use the method of even extensions, as outlined in
the notes, to show that the solution wu(z,t) is given by

1 o0 5 )
u(x,t) = e~ (z=y)?/4kt | o—(z+y)?/4kt du.
(=) Akt /0 ( ) F(y) dy




