Math 5587 - Homework 5 (Due Thursday Oct 13)

In any question that asks for a series representation for the solution of a PDE, you do not need to give formulas for the coefficients A_{n} and B_{n}.

1. Let $\varphi(x)=x^{2}$ for $0 \leq x \leq 1=\ell$.
(a) Calculate the Fourier sine series for φ.
(b) Calculate the Fourier cosine series for φ.
2. Find the Fourier cosine series of the function $\sin (x)$ in the interval $(0, \pi)$. Use it to compute the sums

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1}
$$

3. (a) Use the Fourier expansion to explain why the note produced by a violin string rises by one octave when the string is clamped exactly at its midpoint. [Each increase by an octave corresponds to a doubling of the frequency.]
(b) Explain why the pitch of the note rises when the string is tightened.
4. A quantum-mechanical particle on the line with an infinite potential outside the interval $(0, \ell)$ ("particle in a box") is described by Schrödinger's equation

$$
u_{t}=i u_{x x} \quad \text { on }(0, \ell),
$$

where $i=\sqrt{-1}$, with Dirichlet conditions $u(0, t)=u(\ell, t)=0$ at the ends. Use separation of variables to find a representation formula for $u(x, t)$ as a series.
5. Consider waves in a resistant medium, which satisfy the equation

$$
\text { (W) }\left\{\begin{aligned}
u_{t t}-c^{2} u_{x x}+r u_{t} & =0, & & 0<x<\ell, t>0 \\
u(x, 0) & =\varphi(x), & & 0<x<\ell \\
u_{t}(x, 0) & =\psi(x), & & 0<x<\ell \\
u(0, t)=u(\ell, t) & =0 & & t>0,
\end{aligned}\right.
$$

where r is a constant, $0<r<2 \pi c / \ell$. Use separation of variables to write down the series expansion of the solution.
6. Consider the wave equation $u_{t t}=c^{2} u_{x x}$ for $0<x<\ell$ with boundary conditions $u_{x}(0, t)=u(\ell, t)=0$.
(a) Show that the eigenfunctions are $X_{n}(x)=\cos \left(\left(n+\frac{1}{2}\right) \pi x / \ell\right)$.
(b) Write down the series expansion for a solution $u(x, t)$.
7. Consider diffusion inside an enclosed circular tube. Let its length (circumference) be 2ℓ. Let x denote the arc length parameter where $-\ell \leq x \leq \ell$. Then the concentration of the diffusing substance satisfies

$$
\left\{\begin{aligned}
u_{t}-k u_{x x} & =0, & & -\ell<x<\ell, t>0 \\
u(-\ell, t) & =u(\ell, t) & & t>0 \\
u_{x}(-\ell, t) & =u_{x}(\ell, t) & & t>0
\end{aligned}\right.
$$

These are called periodic boundary conditions.
(a) Show that the eigenvalues are $\lambda=(n \pi / \ell)^{2}$ for $n=0,1,2,3, \ldots$.
(b) Show that the concentration is

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\frac{\pi n x}{\ell}\right)+B_{n} \sin \left(\frac{\pi n x}{\ell}\right)\right) \exp \left(\frac{-n^{2} \pi^{2} k t}{\ell^{2}}\right) .
$$

