MATH 5587 - HOMEWORK 8 (DUE THURSDAY NOV 10)

In each problem, $D \subset \mathbb{R}^n$ is open and bounded, and n = 3 unless otherwise specified.

1. Let $u \in C^2(\overline{D})$ be a solution of

Use energy methods to show that

$$\iiint_D u^2 + \|\nabla u\|^2 \, d\mathbf{x} \le \iiint_D f^2 \, d\mathbf{x}. \tag{2}$$

Indicate how this is a stability estimate for (1). [Hint: Multiple the PDE by u, integrate both sides over D, and then use Green's first identity. Use Cauchy's inequality $2ab \leq a^2 + b^2$ on the right hand side.]

2. Use energy methods to prove uniqueness of solutions $u \in C^2(\overline{D})$ of the Robin problem

$$-\Delta u(\mathbf{x}) = f(\mathbf{x}) \quad \text{if } \mathbf{x} \in D$$
$$\frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) + a(\mathbf{x})u(\mathbf{x}) = h(\mathbf{x}) \quad \text{if } \mathbf{x} \in \partial D,$$

provided a > 0.

3. Consider the heat equation

$$\begin{cases} u_t - \Delta u = f & \text{in } D \times (0, T] \\ u = g & \text{on } D \times \{t = 0\} \\ u = h & \text{on } \partial D \times (0, T]. \end{cases}$$

Prove uniqueness using energy methods. [Hint: Let u and v be two solutions and set w = u - v. Define the energy

$$e(t) = \iiint_D w(\mathbf{x}, t)^2 \, d\mathbf{x}.$$

Show that $e'(t) \leq 0$ and e(0) = 0. Conclude that e(t) = 0 for all t. You will need to use Green's identities.]

4. Let $u, v \in C^2(\overline{D})$ satisfy

$$-\Delta u + F(u) \le -\Delta v + F(v) \quad \text{in } D,$$

where $F : \mathbb{R} \to \mathbb{R}$ is increasing, that is, $F(s) \leq F(t)$ whenever $s \leq t$. Prove the comparison principle:

If
$$u \leq v$$
 on ∂D then $u \leq v$ everywhere in D .

[Hint: Assume to the contrary that $u(\mathbf{x}) > v(\mathbf{x})$ for some $\mathbf{x} \in D$, and define the **open** set $D' = \{\mathbf{x} \in D \mid u(\mathbf{x}) > v(\mathbf{x})\}$. Set w := u - v and show that $\Delta w \ge 0$ on D' and $w \le 0$ on $\partial D'$. Use the weak maximum principle on D' to get a contradiction.]

- 5. Give an example in n = 1 dimension to show that the comparison principle from Problem 4 may not hold if F is not increasing. [Hint: Consider the eigenvalue problem u''(x) + u(x) = 0 with $u(0) = u(\pi) = 0$ that we encountered in separation of variables.]
- 6. Use the comparison principle from Problem 4 to prove uniqueness of solutions $u \in C^2(\overline{D})$ of

$$\begin{array}{c} -\Delta u + F(u) = f \quad \text{in } D\\ u = g \quad \text{on } \partial D, \end{array}$$

$$(3)$$

where $F : \mathbb{R} \to \mathbb{R}$ is increasing.

- 7. A function $u \in C^2(\overline{D})$ is subharmonic in D if $-\Delta u \leq 0$ in D. Let u(x, y) be subharmonic in an open set $D \subset \mathbb{R}^2$.
 - (a) Show that

$$u(x,y) \le \frac{1}{2\pi} \int_0^{2\pi} u(x + a\cos\theta, y + a\sin\theta) \, d\theta,$$

for all a > 0 such that the ball of radius a centered at (x, y) belongs to D. [Hint: It is enough to prove the result for x = y = 0, by translation invariance. Use Poisson's integral formula to construct a harmonic function v on the disk $x^2 + y^2 \le a^2$ with boundary values v = u for $x^2 + y^2 = a^2$. Then use the comparison principle from Problem 4 to show that $u \le v$ in the disk.]

(b) Integrate the expression above in polar coordinates to show that

$$u(x,y) \le \frac{1}{\pi a^2} \int_0^{2\pi} \int_0^a u(x+r\cos\theta, y+r\sin\theta) \, r dr d\theta,$$

whenever the ball $B(\mathbf{x}, a)$ is contained in D.

8. Let $\{\alpha_n\}_{n=1}^{\infty}$ denote the positive solutions of the equation $\alpha \tan(\alpha) = 1$. Find the solution u(x, y) of the boundary-value problem

$$\begin{cases} \Delta u = 0, & 0 < x < 1, \quad y > 0 \\ u_x(0, y) = 0, & y > 0 \\ u(1, y) + u_x(1, y) = 0, & y > 0 \\ u(x, 0) = 1, & 0 < x < 1 \end{cases}$$

that is bounded as $y \to \infty$. [Hint: Use separation of variables and look for a series solution. Use the problems from HW7 to show that the eigenvalues are nonnegative and the eigenfunctions are orthogonal. You do not need to prove that the eigenfunctions are a complete orthonormal system, but do give formulas for the coefficients of the series.]