## Math 5587 - Homework 8 (Due Thursday Nov 10)

In each problem, $D \subset \mathbb{R}^{n}$ is open and bounded, and $n=3$ unless otherwise specified.

1. Let $u \in C^{2}(\bar{D})$ be a solution of

$$
\left.\begin{array}{rl}
u-\Delta u=f & \text { in } D  \tag{1}\\
u=0 & \text { on } \partial D .
\end{array}\right\}
$$

Use energy methods to show that

$$
\begin{equation*}
\iiint_{D} u^{2}+\|\nabla u\|^{2} d \mathbf{x} \leq \iiint_{D} f^{2} d \mathbf{x} . \tag{2}
\end{equation*}
$$

Indicate how this is a stability estimate for (1). [Hint: Multiple the PDE by $u$, integrate both sides over $D$, and then use Green's first identity. Use Cauchy's inequality $2 a b \leq$ $a^{2}+b^{2}$ on the right hand side.]
2. Use energy methods to prove uniqueness of solutions $u \in C^{2}(\bar{D})$ of the Robin problem

$$
\left.\begin{array}{ll}
-\Delta u(\mathbf{x})=f(\mathbf{x}) & \text { if } \mathbf{x} \in D \\
a(\mathbf{x}) u(\mathbf{x})=h(\mathbf{x}) & \text { if } \mathbf{x} \in \partial D,
\end{array}\right\}
$$

provided $a>0$.
3. Consider the heat equation

$$
\left\{\begin{aligned}
u_{t}-\Delta u=f & \text { in } D \times(0, T] \\
u=g & \text { on } D \times\{t=0\} \\
u=h & \text { on } \partial D \times(0, T]
\end{aligned}\right.
$$

Prove uniqueness using energy methods. [Hint: Let $u$ and $v$ be two solutions and set $w=u-v$. Define the energy

$$
e(t)=\iiint_{D} w(\mathbf{x}, t)^{2} d \mathbf{x}
$$

Show that $e^{\prime}(t) \leq 0$ and $e(0)=0$. Conclude that $e(t)=0$ for all $t$. You will need to use Green's identities.]
4. Let $u, v \in C^{2}(\bar{D})$ satisfy

$$
-\Delta u+F(u) \leq-\Delta v+F(v) \quad \text { in } D,
$$

where $F: \mathbb{R} \rightarrow \mathbb{R}$ is increasing, that is, $F(s) \leq F(t)$ whenever $s \leq t$. Prove the comparison principle:

If $u \leq v$ on $\partial D$ then $u \leq v$ everywhere in $D$.
[Hint: Assume to the contrary that $u(\mathbf{x})>v(\mathbf{x})$ for some $\mathbf{x} \in D$, and define the open set $D^{\prime}=\{\mathbf{x} \in D \mid u(\mathbf{x})>v(\mathbf{x})\}$. Set $w:=u-v$ and show that $\Delta w \geq 0$ on $D^{\prime}$ and $w \leq 0$ on $\partial D^{\prime}$. Use the weak maximum principle on $D^{\prime}$ to get a contradiction.]
5. Give an example in $n=1$ dimension to show that the comparison principle from Problem 4 may not hold if $F$ is not increasing. [Hint: Consider the eigenvalue problem $u^{\prime \prime}(x)+$ $u(x)=0$ with $u(0)=u(\pi)=0$ that we encountered in separation of variables.]
6. Use the comparison principle from Problem 4 to prove uniqueness of solutions $u \in C^{2}(\bar{D})$ of

$$
\left.\begin{array}{rl}
-\Delta u+F(u)=f & \text { in } D  \tag{3}\\
u=g & \text { on } \partial D,
\end{array}\right\}
$$

where $F: \mathbb{R} \rightarrow \mathbb{R}$ is increasing.
7. A function $u \in C^{2}(\bar{D})$ is subharmonic in $D$ if $-\Delta u \leq 0$ in $D$. Let $u(x, y)$ be subharmonic in an open set $D \subset \mathbb{R}^{2}$.
(a) Show that

$$
u(x, y) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u(x+a \cos \theta, y+a \sin \theta) d \theta
$$

for all $a>0$ such that the ball of radius $a$ centered at $(x, y)$ belongs to $D$. [Hint: It is enough to prove the result for $x=y=0$, by translation invariance. Use Poisson's integral formula to construct a harmonic function $v$ on the disk $x^{2}+y^{2} \leq a^{2}$ with boundary values $v=u$ for $x^{2}+y^{2}=a^{2}$. Then use the comparison principle from Problem 4 to show that $u \leq v$ in the disk.]
(b) Integrate the expression above in polar coordinates to show that

$$
u(x, y) \leq \frac{1}{\pi a^{2}} \int_{0}^{2 \pi} \int_{0}^{a} u(x+r \cos \theta, y+r \sin \theta) r d r d \theta
$$

whenever the ball $B(\mathbf{x}, a)$ is contained in $D$.
8. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ denote the positive solutions of the equation $\alpha \tan (\alpha)=1$. Find the solution $u(x, y)$ of the boundary-value problem

$$
\left\{\begin{aligned}
\Delta u=0, & & 0<x<1, & y>0 \\
u_{x}(0, y) & =0, & & y>0 \\
u(1, y)+u_{x}(1, y) & =0, & & y>0 \\
u(x, 0) & =1, & & 0<x<1
\end{aligned}\right.
$$

that is bounded as $y \rightarrow \infty$. [Hint: Use separation of variables and look for a series solution. Use the problems from HW7 to show that the eigenvalues are nonnegative and the eigenfunctions are orthogonal. You do not need to prove that the eigenfunctions are a complete orthonormal system, but do give formulas for the coefficients of the series.]

