Math 5587 - Lecture 11

Jeff Calder

October 13, 2016

1 Gibb's Phenomenon

The Fourier series for the function

$$
f(x)= \begin{cases}-\frac{1}{2}, & \text { if }-\pi<x<0 \\ +\frac{1}{2}, & \text { if } 0<x<\pi\end{cases}
$$

is

$$
f(x)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{2}{\pi n} \sin (n x)
$$

The Fourier series partial sums

$$
\begin{equation*}
S_{N}(x)=\sum_{\substack{n=1 \\ n \text { odd }}}^{N} \frac{2}{\pi n} \sin (n x), \tag{1}
\end{equation*}
$$

converge pointwise to f provided we set $f(0)=0$. We will show that the convergence here is not uniform, and furthermore, the partial sums S_{N} consistently overshoot the unit 1 jump by about 9% in the limit as $N \rightarrow \infty$. See Figure 1 for an illustration of the overshoot, which is called Gibb's Phenomenon.

We will argue that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \max S_{N}=\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin (\theta)}{\theta} d \theta \approx 0.59 \tag{2}
\end{equation*}
$$

by viewing the sum in (1) as a Riemann sum for an integral similar to the one above. For a completely different proof, refer to Strauss 5.5.

To establish (2), we first consider the question of where the maximum of S_{N} is attained. If N is even, then $S_{N-1}=S_{N}$, and we can replace N by the odd number $N-1$. Therefore we may assume N is odd. We note that the highest frequency sine wave in the partial sum S_{N} is $\sin (N x)$, and this function has a maximum at $N x=\pi / 2$. Thus, it is reasonable to suspect that the maximum of S_{N} is attained at some point x_{N}^{*} of the form $x_{N}^{*}=x / N$. Let's plug this into S_{N} and see what we get:

$$
S_{N}\left(\frac{x}{N}\right)=\sum_{\substack{n=1 \\ n \text { odd }}}^{N} \frac{2}{\pi n} \sin \left(\frac{n}{N} x\right)
$$

Figure 1: Depiction of Gibb's Phenomenon for a unit step function.

Let us rewrite this in a slightly different form:

$$
S_{N}\left(\frac{x}{N}\right)=\frac{1}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{N}\left(\frac{n}{N}\right)^{-1} \sin \left(\frac{n}{N} x\right) \frac{2}{N}
$$

Let us set $\Delta \theta=2 / N$ and $\theta_{n}=n / N$. Then we have

$$
S_{N}\left(\frac{x}{N}\right)=\frac{1}{\pi} \sum_{\substack{n=1 \\ n \text { odd }}}^{N} \frac{\sin \left(\theta_{n} x\right)}{\theta_{n}} \Delta \theta .
$$

Since the sum is over all odd n, we have that $\Delta \theta=2 / N=\theta_{n+2}-\theta_{n}$ is the difference of two subsequent values of θ_{n}. Furthermore, $\theta_{1}=1 / N$ and $\theta_{N}=1$. Therefore, this is exactly a Riemann sum for the integral

$$
\frac{1}{\pi} \int_{0}^{1} \frac{\sin (\theta x)}{\theta} d \theta
$$

Therefore

$$
\lim _{N \rightarrow \infty} S_{N}\left(\frac{x}{N}\right)=\frac{1}{\pi} \int_{0}^{1} \frac{\sin (\theta x)}{\theta} d \theta=\frac{1}{\pi} \int_{0}^{x} \frac{\sin \theta}{\theta} d \theta=: \frac{1}{\pi} \operatorname{Si}(x) .
$$

The function $\operatorname{Si}(x)$ is called the Sine Integral. Like the error function, there is no closed form expression for $\mathrm{Si}(x)$. The integrand of the Sine Integral is often called the cardinal sine function or the sinc function and denoted

$$
\operatorname{sinc} \theta:=\frac{\sin \theta}{\theta}
$$

See Figure 2 for a plot of the sinc function.
We claim the maximum value of $\operatorname{Si}(x)$ occurs at $x=\pi$. To see this, we first note that $\operatorname{sinc} \theta$ has the same sign as $\sin \theta$ for $\theta>0$. So for $n \pi<\theta<(n+1) \pi$, $\operatorname{sinc} \theta>0$ for n even, and $\operatorname{sinc} \theta<0$ for n odd. This tells us that $\operatorname{Si}(x)$ has local maximums at $x=n \pi$ for odd n. Since $\theta \mapsto 1 / \theta$ is decreasing, and $|\sin \theta|$ is π-periodic, we have

$$
\int_{n \pi}^{(n+1) \pi}|\operatorname{sinc} \theta| d \theta \geq \int_{(n+1) \pi}^{(n+2) \pi}|\operatorname{sinc} \theta| d \theta
$$

Figure 2: Plot of the function $\operatorname{sinc} \theta=\frac{\sin \theta}{\theta}$.

Therefore, for odd $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\operatorname{Si}((n+2) \pi) & =\int_{0}^{(n+2) n \pi} \operatorname{sinc} \theta d \theta \\
& =\operatorname{Si}(n \pi)+\int_{n \pi}^{(n+1) \pi} \operatorname{sinc} \theta d \theta+\int_{(n+1) \pi}^{(n+2) \pi} \operatorname{sinc} \theta d \theta \\
& =\operatorname{Si}(n \pi)-\int_{n \pi}^{(n+1) \pi}|\operatorname{sinc} \theta| d \theta+\int_{(n+1) \pi}^{(n+2) \pi}|\operatorname{sinc} \theta| d \theta \\
& \leq \operatorname{Si}(n \pi) .
\end{aligned}
$$

By induction, $\operatorname{Si}(n \pi) \leq \operatorname{Si}(\pi)$ for all odd $n \in \mathbb{N}$. This establishes the claim that the maximum of Si occurs at $x=\pi$. As an exercise, you may also wish to verify that $x=n \pi$ with n odd is a local maximum of Si by computing $\mathrm{Si}^{\prime}(x)=0$ and checking the sign of $\mathrm{Si}^{\prime \prime}(x)$.

Therefore, we have established that

$$
\lim _{N \rightarrow \infty} S_{N}\left(\frac{\pi}{N}\right)=\frac{1}{\pi} \operatorname{Si}(\pi)=\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin \theta}{\theta} d \theta \approx 0.58949
$$

where the value ≈ 0.58949 can be obtained by numerical integration. Since $f\left(0^{+}\right)=0.5$, the overshoot is approximately 9% of the entire unit jump from $f\left(0^{-}\right)=-0.5$ to $f\left(0^{+}\right)=0.5$.

To be entirely rigorous, we have actually only shown that

$$
\liminf _{N \rightarrow \infty} \max S_{N} \geq \frac{1}{\pi} \operatorname{Si}(\pi) \approx 0.58949,
$$

which shows that the overshoot is at least 9% in the limit as $N \rightarrow \infty$. To show that the limit exists, so that

$$
\lim _{N \rightarrow \infty} \max S_{N}=\frac{1}{\pi} \operatorname{Si}(\pi),
$$

takes a bit more work (but not too much). We can differentiate S_{N} to find that

$$
S_{N}^{\prime}(x)=\sum_{\substack{n=1 \\ n \text { odd }}}^{N} \frac{2}{\pi} \cos (n x)=\frac{2}{\pi} \sum_{n=0}^{(N-1) / 2} \cos ((2 n+1) x)
$$

assuming N is odd. Using Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$ we can derive a simpler expression for this sum in a similar way to our derivation of Dirichlet's kernel K_{N} in class. We have

$$
S_{N}^{\prime}(x)=\frac{\sin (x(N+1))}{\pi \sin x}
$$

As an exercise, you should fill in the details above. From this we can show that S_{N} attains its maximum at $x=\pi /(N+1)$, and using the argument above yields

$$
\lim _{N \rightarrow \infty} S_{N}\left(\frac{\pi}{N+1}\right)=\frac{1}{\pi} \operatorname{Si}(\pi) .
$$

