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Notation: We will work in R3, though all results hold with similar proof for arbitrary
dimension. We write x = (x, y, z) ∈ R3 for a point in R3.

1 The weak maximum principle

1.1 Topology

Let us first recall some basic Euclidean topology. For x0 = (x0, y0, z0) ∈ R3 and r > 0 we
define the open ball of radius r > 0 centered at x0 to be

B(x0, r) = {x ∈ R3 | ‖x− x0‖ < r}.

Recall that ‖x‖ =
√

x2 + y2 + z2 is the Euclidean norm, or length, of the vector x.

Definition 1 (Open set). We say a set D ⊂ R3 is open if for every x0 ∈ D, there exists a
radius r > 0 such that B(x0, r) ⊂ D.

In other words, a set D is open if every point x0 ∈ D can be moved by a tiny amount in
any direction and still remain in D. The open ball B(x0, r) is open.

Definition 2 (Closure). Given a set D ⊂ R3, the closure of D, denoted D is defined by

D = {x ∈ R3 | x = lim
n→∞

xn for some sequence xn ∈ D}.

We say a set D is closed if D = D.

Thus, the closure of a set D is the set of all points x ∈ R3 that can be reached by limits
of sequences in D. By taking the constant sequence xn = x ∈ D, we see that D ⊂ D. For the
open ball B(x0, r) the closure is the closed ball

B(x0, r) = {x ∈ R3 | ‖x− x0‖ ≤ r}.

If D is open, then we often say that D is the interior of D.

Definition 3 (Boundary). Given an open set D ⊂ R3, the boundary of D, denoted ∂D, is
defined by

∂D = D \D := {x ∈ D | x 6∈ D}.
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For the ball B(x0, r), the boundary is

∂B(x0, r) = {x ∈ R3 | ‖x− x0‖ = r}.

Definition 4 (Bounded set). We say a set D ⊂ R3 is bounded if there exists R > 0 such that
D ⊂ B(0, R), where 0 = (0, 0, 0).

In other words, D is bounded if there exists R > 0 such that for every x ∈ D we have
‖x‖ ≤ R. Every ball B(x0, r) is bounded.

We note these are just one choice of definitions and others are available. For example,
some books define closed sets to be the complements of open sets, and the closure is defined as
the intersection of all closed sets containing D. A basic exercise in any course on real analysis
is to verify that all the definitions are equivalent.

1.2 Poisson’s equation

Let D ⊂ R3 be an open and bounded set, and consider Poisson’s equation

−∆u = f in D, (1)

where ∆u is the Laplacian defined by

∆u := uxx + uyy + uzz.

We will consider solutions u in the space C2(D). For general k, Ck(D) is the collection of
functions u : D → R that are k-times continuously differentiable on D. We consider C2(D)
because ∆u involves second derivatives of u, and so these should be defined and continuous
for the equation to make sense classically.

We give solutions of Laplace’s equation ∆u = 0 a special name.

Definition 5. We say u ∈ C2(D) is harmonic in D if ∆u = 0 in D.

Recall that Poisson’s equation (1) is steady state for the heat equation

ut −∆u = f

and the wave equation
utt −∆u = f.

For the heat equation, f(x) represents the rate per unit volume that heat is being added or
removed at position x. For the wave equation f(x) represents the magnitude of an external
force applied in the vertical direction at position x.

Let’s consider steady state for the heat equation when f = 0 for a moment. This means
ut = 0 so the heat density is constant in time. Since f = 0, there is no heat being added or
removed from the system in the interior D. We claim from a formal standpoint that u cannot
have an interior max or min, i.e., the max and min must be attained on the boundary ∂D. To
see why, recall that the heat equation ut−∆u = 0 decreases interior maximums and increases
interior minimums. If u had a strict maximum inside D, for instance, then the heat equation
would decrease the value of this max, and so u could not be a steady state solution of the heat
equation.

The argument above is purely formal, but it suggests that harmonic functions satisfy some
type of maximum principle. Formalizing the maximum principle is an important step in our
study of Poisson’s equation.
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Theorem 1 (Weak maximum principle). Let D ⊂ R3 be an open and bounded set, and suppose
u ∈ C2(D) satisfies

∆u ≥ 0 in D. (2)

Then
max
x∈D

u(x) = max
x∈∂D

u(x). (3)

The maximum principle states that whenever ∆u ≥ 0 in D, u must attain its maximum
value over D on the boundary ∂D. It does not preclude u from also attaining its maximum
inside D. We will prove later the Strong Maximum Principle, which says that the only time u
can attain its max inside D is when u is constant.

The maximum principle relies on the following lemma.

Lemma 1 (Necessary conditions for maxima). Let D ⊂ R3 be open, and suppose there exists
x0 ∈ D such that

u(x) ≤ u(x0) for all x ∈ D.

Then
∆u(x0) ≤ 0. (4)

Proof. Since D is open, there exists r > 0 such that B(x0, r) ⊂ D. Therefore x 7→ u(x, y0, z0)
has a maximum at x0 over the interval x ∈ (x0 − r, x0 + r). By the second derivative test
uxx(x0, y0, z0) ≤ 0. Similar arguments show that uyy(x0) ≤ 0 and uzz(x0) ≤ 0. Therefore

∆u(x0) = uxx(x0) + uyy(x0) + uzz(x0) ≤ 0.

We now have the proof of the maximum principle Theorem 1.

Proof. Let ε > 0 and define
w(x) = u(x) + εx2,

where x = (x, y, z) ∈ D. Since D is bounded, there exists R > 0 such that D ⊂ B(0, R), and
therefore x2 ≤ R2 for all x ∈ D. It follows that

u(x) ≤ w(x) ≤ u(x) + εR2 for all x ∈ D. (5)

We also compute that

∆w(x) = ∆u(x) + 2ε ≥ 2ε > 0 for all x ∈ D. (6)

Since w is a continuous function on a closed and bounded set D, w attains its maximum over
D at some point x0 ∈ D. By (6) and Lemma 1 we know x0 6∈ D; therefore x0 ∈ ∂D and we
have

max
x∈D

u(x) ≤ max
x∈D

w(x) = max
x∈∂D

w(x)

(5) ≤ max
x∈∂D

u(x) + εR2.

Sending ε→ 0+ we have
max
x∈D

u(x) ≤ max
x∈∂D

u(x).
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Since ∂D ⊂ D, the opposite inequality maxx∈∂D u(x) ≤ maxx∈D u(x) is true trivially. There-
fore

max
x∈D

u(x) = max
x∈∂D

u(x).

We also have the corresponding minimum principle.

Corollary 1 (Weak minimum principle). Let D ⊂ R3 be an open and bounded set, and suppose
u ∈ C2(D) satisfies

∆u ≤ 0 in D. (7)

Then
min
x∈D

u(x) = min
x∈∂D

u(x). (8)

Proof. Apply the weak maximum principle to v = −u.

We can also restate the maximum and minimum principles as in the following corollary,
whose proof is immediate.

Corollary 2. Let D ⊂ R3 be open and bounded, and suppose u is harmonic in D. Then

m ≤ u(x) ≤M for all x ∈ D, (9)

where m = minx∈∂D u(x) and M = max∂D u(x).

The maximum principle is a very powerful tool for proving uniqueness and stability (among
many other properties) of Poisson’s equation.

Lemma 2. Let D ⊂ R3 be open and bounded, and let u ∈ C2(D) be a solution of

−∆u = f in D

u = g on ∂D.

}
(10)

Then there exists R > 0 depending only on D such that

max
x∈D
|u(x)| ≤ max

x∈∂D
|g(x)|+ R2

6
max
x∈D
|f(x)|. (11)

Proof. SinceD is bounded, there existsR > 0 such thatD ⊂ B(0, R). LetA = maxx∈∂D |g(x)|,
B = maxx∈D |f(x)|, and define

v(x) = u(x) +
B

6
(x2 + y2 + z2 −R2)−A,

where x = (x, y, z). By the choice of R, x2 + y2 + z2 ≤ R2 for all R, therefore for x ∈ ∂D

v(x) ≤ u(x)−A = g(x)− max
x∈∂D

|g(x)| ≤ 0.

We also compute
∆v(x) = ∆u(x) + B = −f(x) + max

x∈D
|f(x)| ≥ 0.
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By the maximum principle Theorem 1 we have v(x) ≤ 0 for all x ∈ D. Therefore

u(x) ≤ A +
B

6
(R2 − x2 − y2 − z2) ≤ max

x∈∂D
|g(x)|+ R2

6
max
x∈D
|f(x)|,

for all x ∈ D. Applying the same argument to −u yields

−u(x) ≤ max
x∈∂D

|g(x)|+ R2

6
max
x∈D
|f(x)|.

Therefore

|u(x)| ≤ max
x∈∂D

|g(x)|+ R2

6
max
x∈D
|f(x)|

for all x ∈ D, which completes the proof.

Let us give an application of Lemma 2 to uniqueness and stability of the Dirichlet problem
for Poisson’s equation. Suppose u, v ∈ C2(D) are solutions of

−∆u = f1 in D

u = g1 on ∂D,

}
and

−∆v = f2 in D

v = g2 on ∂D,

}
(12)

respectively, where D ⊂ R3 is open and bounded. Then w := u− v is a solution of

−∆w = f1 − f2 in D

w = g1 − g2 on ∂D,

}
(13)

as the equation is linear. Applying Lemma 2 to w we have

max
x∈D
|u1(x)− u2(x)| ≤ max

x∈∂D
|g1(x)− g2(x)|+ R2

6
max
x∈D
|f1(x)− f2(x)|. (14)

Eq. (14) gives both uniqueness and stability. Indeed, if f1 = f2 and g1 = g2, then u1 = u2,
which is uniqueness. Furthermore, if f1 is close to f2, and g1 is close to g2, then u1 is similarly
close to u2. This is a stability result; small changes in the data yield small changes in the
solution.

2 Energy methods

Before discussing energy methods, let us recall the divergence theorem and Green’s identities.

2.1 Green’s identities

Recall for a vector field v(x) = (v1(x),v2(x),v3(x)), the divergence of v is defined as

div(v) =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
.

If v = ∇u = (ux, uy, uz) for a function u(x, y, z) then

div(∇u) = uxx + uyy + uzz = ∆u.
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We will assume our bounded open set D ⊂ R3 has a smooth boundary ∂D so that we can
define at each point x ∈ ∂D the unit outward normal vector n = n(x). Let us recall the
divergence theorem ∫∫∫

D
div(v) dx =

∫∫
∂D

v · n dS,

where dx = dxdydz. By making special choices for v, we can deduce important integration
identities collectively called Green’s identities.

First, we let v = div(v∇u) for functions u, v ∈ C2(D). Using the product rule we find

v = div(v∇u) = ∇u · ∇v + v∆u.

Plugging this into the divergence theorem yields Green’s first identity∫∫
∂D

v
∂u

∂n
dS =

∫∫∫
D
∇u · ∇v dx +

∫∫∫
D
v∆u dx,

where ∂u
∂n = ∇u · n is the normal derivative of u.

Swapping the roles of u and v in Green’s first identity we have∫∫
∂D

u
∂v

∂n
dS =

∫∫∫
D
∇u · ∇v dx +

∫∫∫
D
u∆v dx.

Subtracting this from Green’s first identity we have Green’s second identity∫∫∫
D

(u∆v − v∆u) dx =

∫∫
∂D

(
u
∂v

∂n
− v

∂u

∂n

)
dS.

A special case of Green’s second identity is obtained by taking v = 1 to find that∫∫∫
D

∆u dx =

∫∫
∂D

∂u

∂n
dS.

Green’s identities are extensions of the familiar one-dimensional integration by parts for-
mula to higher dimensions. All of the identities above hold for arbitrary dimension (not just
3), and are commonly referred to as just integration by parts formulas.

2.2 The Dirichlet problem

We consider again the Dirichlet problem for Poisson’s equation

−∆u = f in D

u = g on ∂D.

}
(15)

Energy methods give us a quick and easy proof of uniqueness. Indeed, suppose u, v ∈ C2(D)
are solutions of (15). Then w := u − v satisfies ∆w = 0 in D and w = 0 on ∂D. Applying
Green’s first identity to w (use u = w and v = u in the identity) yields

0 =

∫∫∫
D
∇w · ∇w dx =

∫∫∫
D
‖∇w‖2 dx.
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The integrand ‖∇w‖2 is nonnegative, and it’s integral is zero. Since ∇w is continuous, we
must have ∇w = 0 in D. Since w = 0 on ∂D, w is constant and w = 0 throughout D. Hence
u = v, so we have uniqueness.

Proving stability of (15) with energy methods is a bit trickier, and requires a Poincaré
inequality (similar to HW6 Problem 7, but in R3). However, for a similar equation, energy
methods can be used to prove stability with little difficulty.

Exercise 1. Let u ∈ C2(D) be a solution of

u−∆u = f in D

u = 0 on ∂D.

}
(16)

Use energy methods to show that∫∫∫
D
u2 + ‖∇u‖2 dx ≤

∫∫∫
D
f2 dx. (17)

Indicate how this is a stability estimate for (16). [Hint: Multiple the PDE by u, integrate
both sides over D, and then use Green’s first identity. Use Cauchy’s inequality 2ab ≤ a2 + b2

on the right hand side.]

2.3 The Neumann problem

We now consider the Neumann problem for Poisson’s equation

−∆u = f in D

∂u

∂n
= g on ∂D.

 (18)

We first note that if u is a solution of (18), then so is v = u + C for any constant C. So we
do not expect to get uniqueness, but we can hope to show that any two solutions must differ
by a constant. For this, we also assume the domain D is connected. This means that between
any two points x1 and x2 in D there exists a continuous path contained entirely in D starting
at x1 and ending at x2.

As usual, let u and v be two solutions of (18) and define w := u − v. Then w satisfies
∆w = 0 in D and ∂w

∂n = 0 on ∂D. Using Green’s identity we again find that∫∫∫
D
‖∇w‖2 dx = 0.

Therefore ∇w = 0 throughout D. Since D is connected, w = C for some constant C.1

Therefore u = v+C. This is the best we can prove, given the discussion above. Therefore the
solution of (18) is unique up to a constant.

Energy methods can also give us information about existence of solutions. Consider now
the homogeneous Neumann problem

−∆u = f in D

∂u

∂n
= 0 on ∂D.

 (19)

1Since ∇w = 0, we can show that w is constant along any path in D, and since D is connected, w is constant
on D. If D was not connected, say it was the union of two disjoint balls, then w could assume a different value
on each ball, and would instead be piecewise constant.
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Suppose a solution u ∈ C2(D) of (19) exists. Then using the special case immediately after
Green’s second identity we have∫∫∫

D
f dx = −

∫∫∫
D

∆u dx = −
∫∫

∂D

∂u

∂n
dS = 0.

Therefore ∫∫∫
D
f dx = 0 (20)

is a necessary condition for the existence of a solution u of (19). That is, if
∫∫∫

D f dx 6= 0,
then no solution exists.

At first, the necessary condition (20) may seem peculiar. It is, in fact, very natural when
one considers that (19) is steady state for the heat equation

ut −∆u = f in D

∂u

∂n
= 0 on ∂D.

 (21)

subject to some initial condition u(x, 0) = g(x). Let H(t) be the total heat in the body D,
which is given by

H(t) =

∫∫∫
D
u(x, t) dx.

The rate of change of H in t is

H ′(t) =

∫∫∫
D
ut(x, t) dx =

∫∫∫
D

∆u + f dx =

∫∫∫
D

∆u dx +

∫∫∫
D
f dx.

Using Green’s identity on the first term on the right yields

H ′(t) =

∫∫
∂D

∂u

∂n
dS +

∫∫∫
D
f dx =

∫∫∫
D
f dx,

since ∂u
∂n = 0. If we have any hope of the heat equation reaching steady state, then we must

have H ′(t) = 0, that is, the total heat is conserved. In this light, (20) is a completely natural
necessary condition for the existence of a solution of the steady state equation (19).

Furthermore, the steady state interpretation of Poisson’s equation sheds light on why
solutions of (19) are unique only up to a constant. Indeed, whenever (20) holds we have

H(t) =

∫∫
D
u(x, t) dx =

∫∫∫
D
g(x) dx,

where u(x, 0) = g(x). We can of course choose initial conditions g(x) with any total heat
H =

∫∫∫
D g(x) dx we wish. Each choice of H yields a different steady state solution (with

different total heat), and the analysis above shows that all choices of H simply yield vertical
translations u + C of one solution u of (19).
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