
Math 5587 – Lecture 4

Jeff Calder

August 19, 2016

1 Fundamental solution of the heat equation

Consider the heat equation on the whole real line

ut − kuxx = 0 for −∞ < x <∞. (1)

We cannot so easily factor the equation as we did with the wave equation to derive d’Alembert’s
formula. Instead, we need to be slightly more clever. Notice that if u(x, t) is any solution of
the heat equation (1), then

v(x, t) := u(αx, α2t)

is also a solution for any real number α. To check this, we just compute

vxx(x, t) = α2uxx(αx, α2t), and vt(x, t) = α2ut(αx, α
2t),

and use the fact that u solves the heat equation (1) to find that

vt − kvxx = α2(ut − kuxx) = 0.

We have discovered a scale invariance in the heat equation. The different powers on α in the
x and t coordinates reflect the fact that the equation is second order in x and first order in t.

It makes sense to look for a solution of the heat equation that is invariant under such a
scaling. Thus, we might look for a solution u(x, t) of the form

u(x, t) = g

(
x√
t

)
, (2)

for some yet to be determined function g. Then

u(αx, α2t) = g

(
αx√
α2t

)
= g

(
x√
t

)
= u(x, t)

for any positive real number α. Our “educated guess” as to the form of u in (2) is called an
ansatz, and is a common technique for finding special solutions of PDE.

Now, the total amount of heat in the system must be conserved, so we require that

H(t) =

∫ ∞
−∞

u(x, t) dx is constant in t.
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For our ansatz (2) we have

H(t) =

∫ ∞
−∞

g

(
x√
t

)
dx =

√
t

∫ ∞
−∞

g(y) dy, (3)

where we made the change of variables y = x/
√
t in the last step. Unfortunately the total

heat is not constant, and actually grows with t, so our ansatz (2) cannot be a solution of the
heat equation no matter what we choose for g.

All is not lost, however. The computation of the total heat in (3) suggests that we should
instead consider the ansatz

u(x, t) =
1√
t
g

(
x√
t

)
. (4)

Then we have
H(t) =

1√
t

∫ ∞
−∞

g

(
x√
t

)
dx =

∫ ∞
−∞

g(y) dy,

which is independent of t! Now that our ansatz is consistent with the physics of heat diffusion,
let’s plug u into the heat equation and see if we can deduce the function g. Notice we have

uxx(x, t) = t−
3
2 g′′

(
x√
t

)
,

and
ut(x, t) = −1

2
t−

3
2

[
g

(
x√
t

)
+ g′

(
x√
t

)
x√
t

]
.

Substituting these expressions into the heat equation ut − kuxx = 0 we find that

kg′′(y) +
1

2
g(y) +

1

2
yg′(y) = 0,

where y = x/
√
t. Thus, our ansatz (4) has reduced the problem of solving a PDE to that of

solving an ODE, which is generally much easier. Notice we can write this ODE as

g′′(y) +
1

2k
(yg(y))′ = 0.

Therefore
g′(y) +

y

2k
g(y) = C

for some constant C. Since we are only looking for one solution of the heat equation (at the
moment), we can choose any value of C we like, so let’s set C = 0. We multiply by the
integrating factor ey2/4k to find that

d

dy

(
ey

2/4kg(y)
)

= 0.

and hence
g(y) = Ae−y

2/4k,

for any constant A. Recalling the form of the ansatz (4)

u(x, t) =
A√
t
e−x

2/4kt (5)
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is a solution of the heat equation (1) for −∞ < x < ∞ and t > 0. You can (and should)
check this statement by substituting u(x, t) into the heat equation (1). Notice the solution is
undefined when t ≤ 0.

We usually choose A > 0 so that the total heat is one, i.e.,

A√
t

∫ ∞
−∞

e−x
2/4kt dx =

∫ ∞
−∞

u(x, t) dx = 1.

Making the substitution y = x/
√

4kt we require

A
√

4k

∫ ∞
−∞

e−y
2
dy = 1.

We claim that ∫ ∞
−∞

e−y
2
dy =

√
π, (6)

so that
A =

1√
4πk

.

To see why (6) holds, we square the integral and convert the problem into polar coordinates:(∫ ∞
−∞

e−y
2
dy

)2

=

(∫ ∞
−∞

e−x
2
dx

)(∫ ∞
−∞

e−y
2
dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2) dx dy

=

∫ 2π

0

∫ ∞
0

re−r
2
dr dθ = −πe−r2

∣∣∣∞
0

= π.

Finally, our solution of the heat equation is

Φ(x, t) =
1√

4kπt
e−x

2/4kt. (7)

This solution turns out to be very special, so we call it the fundamental solution of the heat
equation. It is also called the source function or Gaussian kernel. The fundamental solution
of the heat equation has the following important properties:

1. Φt(x, t)− kΦxx(x, t) = 0 for all x and all t > 0,

2. Φ(x, t) > 0 for all x and all t > 0,

3.
∫∞
−∞Φ(x, t) dx = 1 for all t > 0, and

4. Φ is infinitely differentiable in both x and t in its domain of definition (t > 0).

The fundamental solution Φ(x, t) starts off as a tall spike centered around the origin when
t is small. As time increases, the height decreases and the width increases, all the while
preserving the total area under the graph to be 1 (property 3 above). The height of Φ scales
with 1/

√
t while the width scales like

√
t. See Figure 1 for an illustration. In probability, the

function Φ is the normal or Gaussian distribution with standard deviation σ =
√

2kt.
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Figure 1: Plots of the fundamental solution of the heat equation with with k = 1 and t =
0.1, 1, 5.

1.1 Solving the heat equation on the whole line

Since the heat equation is translation invariant, the shifted function Φ(x − y, t) is also a
solution of the heat equation for every real number y. Since the heat equation is linear, the
linear combination of translated solutions

u(x, t) =
n∑
i=1

Φ(x− yi, t)fi

is also a solution of the heat equation for any real numbers y1, . . . , yn and f1, . . . , fn. Inter-
preting the sum above as a Riemann sum for an integral, it is natural to expect that

u(x, t) =

∫ ∞
−∞

Φ(x− y, t)f(y) dy (8)

is a solution of the heat equation, for any reasonable function f(y). Indeed, we can easily
check that u solves the heat equation by differentiating under the integral to find that

ut(x, t) =

∫ ∞
−∞

Φt(x− y, t)f(y) dy and uxx(x, t) =

∫ ∞
−∞

Φxx(x− y, t)f(y) dy.

Therefore

ut(x, t)− kuxx(x, t) =

∫ ∞
−∞

(Φt(x− y, t)− kΦxx(x− y, t))g(y) dy = 0

since Φ(x− y, t) solves the heat equation Φt − kΦxx = 0.
In fact, the function u given by (8) is the solution of the heat equation

ut − kuxx = 0 for −∞ < x <∞,
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with initial condition u(x, 0) = f(x). To see why, note that Equation (8) expresses u(x, t) as
an average of the values of f(y), weighted by the shifted fundamental solution Φ(x− y, t). As
t → 0, the weights become highly concentrated around x = y (see Figure 1), and we recover
f(x) in the limit as t→ 0+. More precisely we have

lim
t→0+

u(x, t) = lim
t→0+

∫ ∞
−∞

Φ(x− y, t)f(y) dy = f(x)

whenever f is continuous at x. We will not prove this right now, but will return to this later
in the course when we discuss delta functions and generalized functions1

The representation formula (8) justifies calling Φ the fundamental solution of the heat
equation, since any solution with (reasonably) arbitrary initial condition u(x, 0) = f(x) can
be expressed in terms of Φ.

Example 1.1. Let us find the solution u(x, t) of the heat equation

ut − kuxx = 0 for −∞ < x <∞,

subject to the step function initial condition

f(x) = u(x, 0) =

{
1, if x > 0

0, if x ≤ 0.

The representation formula (8) yields

u(x, t) =
1√

4kπt

∫ ∞
0

e−(x−y)
2/4kt dy =

1√
π

∫ x/
√
4kt

−∞
e−z

2
dz =

1

2
+

1

2
erf
(

x√
4kt

)
, (9)

where erf is the error function defined by

erf(x) =
2√
π

∫ x

0
e−z

2
dz.

There is unfortunately no closed form expression for the error function, so we are left to
numerically evaluate the solution u(x, t) at this point. See Figure 2 for a depiction of how the
solution u(x, t) evolves over time.

Example 1.2. Let us find the solution u(x, t) of the heat equation

ut − kuxx = 0 for −∞ < x <∞,

subject to the initial condition f(x) = u(x, 0) = e−x. The representation formula (8) yields

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−(x−y)
2/4kte−y dy.

This is one of the fortunate few examples that can be integrated. Notice the exponent in the
integrand is

−x
2 − 2xy + y2 + 4kty

4kt
.

1Φ(x, t) converges to a delta function as t→ 0+, and it is common for this reason to write Φ(x, 0) = δ(x).
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Figure 2: Plots of the solution u(x, t) = 1
2 + 1

2erf
(

x√
4t

)
at t = 0.1, 1, 5, 10 from Example 1.1.

We can complete the square to find that

−x
2 − 2xy + y2 + 4kty

4kt
= −(y + 2kt− x)2

4kt
+ kt− x.

Make the change of variables z = (y + 2kt− x)/
√

4kt, so that dy =
√

4ktdz and we have

u(x, t) = ekt−x
1√
π

∫ ∞
−∞

e−z
2
dz = ekt−x.

It is easy to verify that u(x, t) = ekt−x is indeed a solution of the heat equation.

1.2 Properties of the heat equation

We can deduce many important properties of the heat equation from the representation formula
(8).

1. As we expect from physics, the total amount of heat is conserved. Indeed

Total Heat =

∫ ∞
−∞

u(x, t) dx =

∫ ∞
−∞

f(y)

∫ ∞
−∞

Φ(x− y, t) dx dy =

∫ ∞
−∞

f(y) dy

is constant in time. Notice we exchanged the order of integration in the second step.

2. All partial derivatives of u pass through the integral and fall onto the source function.
For example

uxxt(x, t) =

∫ ∞
−∞

Φxxt(x− y, t)f(y) dy.

Since Φ is infinitely differentiable, we see that u is also infinitely differentiable for all
t > 0. This is true regardless of whether the initial condition f(x) = u(x, 0) is even
differentiable! Thus, the heat equation instantaneously smoothes out the initial data.
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Figure 3: Denoising a signal with the heat equation.

3. The heat equation supports infinite speed of propagation. Indeed, suppose the initial
condition is

f(x) =

{
1, if − 1 ≤ x ≤ 1

0, otherwise.

Then the solution of the heat equation

u(x, t) =

∫ 1

−1
Φ(x− y, t) dy =

1√
4kπt

∫ 1

−1
e−(x−y)

2/4kt dy

is positive for all x and t > 0. Hence, the initial heat energy contained in the interval
[−1, 1] spreads out along the entire infinite rod instantaneously.

The reader should contrast property 3 with the wave equation, where information propagates
at a finite speed bounded by c.

Since the heat equation smoothes the initial data, we can use it to remove noise from
signals. Figure 3 shows a noisy 1D signal and the result of applying the heat equation to the
signal for various amounts of time. As time increases, the signal becomes smoother and more
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noise is removed. At the same time, important features in the signal may be removed as well
(i.e., they are mistaken for noise).

Images are 2D signals, and the heat equation was one of the first PDE proposed for
noise removal in the image processing community. Here, we model an image as a function
f : [0, 1]2 → Rn, where n = 1 for grayscale images, and n = 3 for color images. The quantity
f(x) is the color of the pixel at location x. We apply the 2D heat equation to each image
component separately (in RGB space, or more preferably YCbCr space). Figure 4(a) shows a
noisy image of Vincent Hall, and Figure 4(b) shows the result of applying the heat equation to
the noisy image for a short amount of time. Notice that the noise is mostly removed, but also
important image features and details are blurred. This is due to the fact that the heat equation
indiscriminately blurs everything without regard for whether it is noise or an important edge
in the image.

Figure 4(c) shows the result of applying a nonlinear heat equation called the Perona-Malik
equation to the same noisy image. The Perona-Malik equation is given by

ut − div (k(‖∇u‖)∇u) = 0.

This is a nonlinear heat equation where the thermal conductivity k depends on the norm of
the gradient ‖∇u‖. The function k is chosen to be a decreasing function, so that when ‖∇u‖
is large, diffusion is slowed or completely stopped, and when ‖∇u‖ is small, diffusion proceeds.
This smoothes the image while preserving some details and sharp edges. A common choice
for k is

k(s) =
1

1 + s2/M
,

where M > 0 is a parameter controlling how much detail you wish to preserve in the image.
Notice in Figure 4(c) that most of the noise is removed, while many of the edges and fine
details in the image are preserved. The Perona-Malik equation is not the only PDE used in
image processing—indeed, there is a very active research field at the intersection of PDE and
image processing.
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(a) Noisy image

(b) Denoising with the heat equation

(c) Denoising with the Perona-Malik equation

Figure 4: Denoising an image with the heat equation. The heat equation (b) indiscriminately
blurs edges and removes image detail, while the Perona-Malik equation (c) removes noise while
preserving edges and some fine details.
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