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We know how to solve the Cauchy problems for the wave and heat equations. For the wave
equation we have d’Alembert’s formula

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(s) ds,

where f(x) = u(x, 0) is the initial position and g(x) = ut(x, 0) is the initial velocity of the
string. For the heat equation we have the representation formula

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−(x−y)
2/4ktf(y) dy,

where f(x) = u(x, 0) is the initial heat distribution. The Cauchy problem models the vi-
brations of an infinitely long string, and the diffusion of heat in an infinitely long insulated
rod.

We consider here the heat and wave equations on the half-line x ≥ 0. This models the
vibrations of a semi-infinite string and diffusion within a semi-infinite rod. We must specify
a boundary condition at x = 0, which will take to be Dirichlet u(0, t) = 0 or Neumann
ux(0, t) = 0 conditions.

1 Even and odd functions

Before addressing the half-line problems directly, we recall some properties of even and odd
functions.

Definition 1. A function f(x) is even if f(x) = f(−x) for all x, and odd if f(x) = −f(−x)
for all x.

Lemma 1. If f is an odd function that is continuous at x = 0, then f(0) = 0.

Proof. Since f is odd

f(0) = lim
x→0+

f(x) = − lim
x→0+

f(−x) = − lim
x→0−

f(x) = −f(0),

where the limits above hold due to the continuity of f at x = 0. Therefore 2f(0) = 0, hence
f(0) = 0.

It follows from Lemma 1 that if u(x, t) is an odd function of x for every t, then u(0, t) = 0.
Hence u automatically satisfies the homogeneous Dirichlet boundary condition at t = 0.
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Lemma 2. If f is an even function that is differentiable at x = 0 then f ′(0) = 0.

Proof. Since f(h) = f(−h) we have

f ′(0) = lim
h→0

f(h)− f(−h)

2h
= 0.

By Lemma 2, if u(x, t) is an even function of x for every t, then ux(0, t) = 0. Hence u
automatically satisfies the homogeneous Neumann boundary conditions at t = 0.

Lemma 3. Let u(x, t) be a solution of the wave equation on −∞ < x < ∞, t ≥ 0. If the
initial data f(x) = u(x, 0) and g(x) = ut(x, 0) are even (respectively, odd) functions, then for
all t > 0, u(x, t) is an even (respectively, odd) function of x.

The lemma shows that the solution of the wave equation on the entire real line preserves
the evenness or oddness of the initial data.

Proof. Suppose f and g are even. By d’Alembert’s formula

u(−x, t) =
1

2
(f(−x+ ct) + f(−x− ct)) +

1

2c

∫ −x+ct

−x−ct
g(s) ds

=
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ −x+ct

−x−ct
g(−s) ds

=
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

∫ x+ct

x−ct
g(y) dy = u(x, t),

where we made the change of variables y = −s in the final step. Therefore u is an even
function of x.

The proof that u is odd when f and g are odd is similar. We leave it to Exercise 1.

Exercise 1. Complete the proof of Lemma 3 by showing that when f and g are odd, the
solution u given by d’Alembert’s formula is also an odd function of x.

We can prove the same result for the heat equation.

Lemma 4. Let u(x, t) be a solution of the heat equation on −∞ < x < ∞, t ≥ 0. If the
initial data f(x) = u(x, 0) is even (respectively, odd), then for all t > 0, u(x, t) is an even
(respectively, odd) function of x.

Proof. Suppose f is an odd function. Then

u(x, t) =
1√

4πkt

∫ ∞
−∞

e−(x−y)
2/4ktf(y) dy

= − 1√
4πkt

∫ ∞
−∞

e−(x−y)
2/4ktf(−y) dy

= − 1√
4πkt

∫ ∞
−∞

e−(x+z)2/4ktf(z) dz

= −u(−x, t).

Therefore u is an odd function of x as well.
The proof that u is even when f is even is similar.
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2 The odd extension: Dirichlet conditions

2.1 The heat equation

We are now equipped to solve the heat equation

ut − kuxx = 0 for x > 0 and t > 0,

subject to the Dirichlet boundary condition u(0, t) = 0 and the initial condition u(x, 0) = f(x).
The idea is to look instead for an odd solution of the heat equation on the entire real line
satisfying u(x, 0) = f(x) for x ≥ 0. Then by Lemma 1, u automatically satisfies the Dirichlet
boundary condition u(0, t) = 0.

Keeping in mind Lemma 4, we define the odd extension of f by

fodd(x) =

{
f(x), if x ≥ 0

−f(−x), if x < 0,

and solve the heat equation on the entire real line with initial conditions u(x, 0) = fodd(x).
The solution is

u(x, t) =

∫ ∞
−∞

Φ(x− y, t)fodd(y) dy,

where Φ is the fundamental solution of the heat equation. Since f is an odd function, Lemma
4 guarantees that u is an odd function of x for every t, hence u(0, t) = 0.

Let us simplify this formula. We have

u(x, t) =

∫ 0

−∞
Φ(x− y, t)fodd(y) dy +

∫ ∞
0

Φ(x− y, t)fodd(y) dy

= −
∫ 0

−∞
Φ(x− y, t)f(−y) dy +

∫ ∞
0

Φ(x− y, t)f(y) dy

= −
∫ ∞
0

Φ(x+ y, t)f(y) dy +

∫ ∞
0

Φ(x− y, t)f(y) dy

=

∫ ∞
0

(Φ(x− y, t)− Φ(x+ y, t))f(y) dy.

Therefore, the solution of the half-line Dirichlet problem for the heat equation is given by

u(x, t) =
1√

4πkt

∫ ∞
0

(
e−(x−y)

2/4kt − e−(x+y)2/4kt
)
f(y) dy. (1)

Notice the formula only uses the values of f(y) for y ≥ 0.

2.2 The wave equation

We can use the same odd extension technique for the Dirichlet half-line problem for the wave
equation. We are looking for a solution of

utt − c2uxx = 0 for x > 0 and t > 0,
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subject to the Dirichlet boundary condition u(0, t) = 0, and the initial conditions u(x, 0) =
f(x) and ut(x, 0) = g(x). We again define the odd extensions fodd and godd of f and g, and
solve the wave equation on the entire real line with initial conditions u(x, 0) = fodd(x) and
ut(x, 0) = godd(x). d’Alembert’s formula gives

u(x, t) =
1

2
(fodd(x+ ct) + fodd(x− ct)) +

1

2c

∫ x+ct

x−ct
godd(s) ds.

By Lemma 3, u is an odd function of x and so u(0, t) = 0. All that is left is to simplify this
formula.

Recall that x > 0. We have two cases to consider. First, suppose that x ≥ ct. Then
x+ ct ≥ 0 and x− ct ≥ 0 and so

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(s) ds.

Second, suppose that 0 < x < ct. Then x+ ct ≥ 0 and x− ct < 0. Therefore

fodd(x+ ct) = f(x+ ct) and fodd(x− ct) = −f(ct− x),

with similar formulas holding for godd and g. Therefore

u(x, t) =
1

2
(f(x+ ct)− f(ct− x)) +

1

2c

∫ 0

x−ct
−g(−s) ds+

1

2c

∫ x+ct

0
g(s) ds

=
1

2
(f(x+ ct)− f(ct− x))− 1

2c

∫ ct−x

0
g(s) ds+

1

2c

∫ x+ct

0
g(s) ds

=
1

2
(f(x+ ct)− f(ct− x)) +

1

2c

∫ ct+x

ct−x
g(s) ds.

Therefore, the solution of the half-line wave equation with Dirichlet boundary conditions is

u(x, t) =


1

2
(f(x+ ct)− f(ct− x)) +

1

2c

∫ ct+x

ct−x
g(s) ds, if 0 < x < ct

1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(s) ds, if x ≥ ct.

(2)

When 0 < x < ct, the portion of the initial condition propagating left reflects off of x = 0 and
affects the solution at (x, t). This is reflected in the first formula for 0 < x < ct. When x > ct,
the reflections are not felt by the solution, since they propagate at speed at most c. This is
why we obtain exactly d’Alembert’s formula in the second case.

3 The even extension: Neumann conditions

3.1 The heat equation

We now consider the heat equation

ut − kuxx = 0 for x > 0 and t > 0,
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on the half-line subject to the Neumann boundary condition ux(0, t) = 0 and the initial
condition u(x, 0) = f(x). We define the even extension of f by

feven(x) =

{
f(x), if x ≥ 0

f(−x), if x < 0,

and we solve the heat equation on the entire real line with initial condition u(x, 0) = feven(x).
The solution is

u(x, t) =

∫ ∞
−∞

Φ(x− y, t)feven(y) dy. (3)

Since f is an even function, Lemma 4 guarantees that u is an even function of x for every t,
hence ux(0, t) = 0.

As before, we can simplify the solution greatly to obtain

u(x, t) =
1√

4πkt

∫ ∞
0

(
e−(x−y)

2/4kt + e−(x+y)2/4kt
)
f(y) dy. (4)

We leave the details to the reader.

Exercise 2. Verify Equation (4) by simplifying (3).

3.2 The wave equation

We finally consider the wave equation

utt − c2uxx = 0 for x > 0 and t > 0,

on the half-line subject to the Neumann boundary condition ux(0, t) = 0, and the initial
conditions u(x, 0) = f(x) and ut(x, 0) = g(x). We again define the even extensions feven and
geven of f and g, and solve the wave equation on the entire real line with initial conditions
u(x, 0) = feven(x) and ut(x, 0) = geven(x). d’Alembert’s formula gives

u(x, t) =
1

2
(feven(x+ ct) + feven(x− ct)) +

1

2c

∫ x+ct

x−ct
geven(s) ds. (5)

By Lemma 3, u is an even function of x and so ux(0, t) = 0.
As before, we can simplify this formula to obtain

u(x, t) =


1

2
(f(x+ ct)− f(ct− x)) +

1

2c

∫ ct+x

ct−x
g(s) ds, if 0 < x < ct

1

2
(f(x+ ct) + f(ct− x)) +

1

c

∫ ct−x

0
g(s) ds+

1

2c

∫ ct+x

ct−x
g(s) ds, if x ≥ ct.

(6)

The details are left to the reader

Exercise 3. Verify that Equation (6) holds by simplifying (5).
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