Math 5587 Midterm I

Name:

1. Determine whether the following statements are true or false. No justification is required.
[12 points]
(a) The superposition principle states that if $u_{1}(x, y), u_{2}(x, y), u_{3}(x, y), \ldots, u_{n}(x, y)$ are solutions of the same PDE

$$
F\left(u, u_{x}, u_{y}, u_{x x}, u_{y y}, u_{x y}\right)=0
$$

then the linear combination

$$
u(x, y)=c_{1} u_{1}(x, y)+c_{2} u_{2}(x, y)+\cdots+c_{n} u_{n}(x, y)
$$

is also a solution of the same PDE , where c_{1}, \ldots, c_{n} are real numbers.
(b) Suppose u solves the heat equation $u_{t}-k u_{x x}$ on the infinite strip $t>0$ and $0<x<1$ with Neumann boundary conditions $u_{x}(0, t)=0=u_{x}(1, t)$, and initial condition $u(x, 0)=2 x$. Then for all $t>0$

$$
\int_{0}^{1} u(x, t) d x=1 .
$$

(c) d'Alembert's formula for the solution of the wave equation with zero initial velocity is

$$
u(x, t)=\frac{1}{2}(u(x-c t, 0)+u(x+c t, 0)) .
$$

(d) If $f(x)$ is an odd function, then $g(x)$ defined by $g(x)=f(x)^{2}$ is an even function.
2. Find the solution of $u_{t}+u_{x}=0$ satisfying $u(x, 0)=\sin (x)$. [8 points]
3. Solve the wave equation $u_{t t}-c^{2} u_{x x}=0$ on the entire real line $-\infty<x<\infty$ with initial position $u(x, 0)=e^{\frac{1}{x^{2}+1}}$ and initial velocity $u_{t}(x, 0)=x$. Simplify your expression for u as much as possible. [10 points]
4. Find the solution of $u_{t}+\sqrt{x} u_{x}=0$ on the domain $x>0$ and $t>0$ that satisfies $u(x, 0)=x$. [10 points]
5. Solve the heat equation $u_{t}-u_{x x}=0$ on the entire real line $-\infty<x<\infty$ with initial condition $u(x, 0)=\cos (x)$ without using the fundamental solution of the heat equation. Use your answer to deduce the value of the integral

$$
\int_{-\infty}^{\infty} \cos (x) e^{-x^{2} / 4 t} d x
$$

[Hint: Look for a solution of the form $u(x, t)=g(t) \cos (x)$.] [10 points]

