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1 Introduction

The calculus of variations is a field of mathematics concerned with minimizing (or maximizing)
functionals (that is, real-valued functions whose inputs are functions). The calculus of varia-
tions has a wide range of applications in physics, engineering, applied and pure mathematics,
and is intimately connected to partial differential equations (PDEs).

For example, a classical problem in the calculus of variations is finding the shortest path
between two points. The notion of length need not be Euclidean, or the path may be con-
strained to lie on a surface, in which case the shortest path is called a geodesic. In physics,
Hamilton’s principle states that trajectories of a physical system are critical points of the ac-
tion functional. Critical points may be minimums, maximums, or saddle points of the action
functional. In computer vision, the problem of segmenting an image into meaningful regions is
often cast as a problem of minimizing a functional over all possible segmentations—a natural
problem in the calculus of variations. Likewise, in image processing, the problem of restoring
a degraded or noisy images has been very successfully formulated as a problem in the calculus
of variations.

PDEs arise as the necessary conditions for minimizers of functionals. Recall in multi-
variable calculus that if a function u : Rn → R has a minimum at x ∈ Rn then ∇u(x) = 0.
The necessary condition ∇u(x) = 0 can be used to solve for candidate minimizers x. In the
calculus of variations, if a function u : Rn → R is a minimizer of a functional I(u) then
the necessary condition ∇I(u) = 0 turns out to be a PDE called the Euler-Lagrange equation.
Studying the Euler-Lagrange equation allows us to explicitly compute minimizers and to study
their properties. For this reason, there is a rich interplay between the calculus of variations
and the theory of PDEs.

These notes aim to give a brief overview of the calculus of variations at the advanced
undergraduate level. We will only assume knowledge of multivariable calculus and will avoid
real analysis where possible. It is a good idea to review the appendix for some mathematical
preliminaries and notation.

1.1 Examples

We begin with a parade of examples.

Example 1 (Shortest path). Let A and B be two points in the plane. What is the shortest
path between A and B? The answer depends on how we measure length! Suppose the length
of a short line segment near (x, y) is the usual Euclidean length multiplied by a positive scale
factor g(x, y). For example, the length of a path could correspond to the length of time it
would take a robot to navigate the path, and certain regions in space may be easier or harder
to navigate, yielding larger or smaller values of g. Robotic navigation is thus a special case of
finding the shortest path between two points.

Suppose A lies to the left of B and the path is a graph u(x) over the x axis. See Figure 1.
Then the “length” of the path between x and x+ ∆x is approximately

L = g(x, u(x))
√

1 + u′(x)2∆x.

If we let A = (0, 0) and B = (a, b) where a > 0, then the length of a path (x, u(x)) connecting
A to B is

I(u) =

∫ a

0
g(x, u(x))

√
1 + u′(x)2 dx.
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Figure 1: In our version of the shortest path problem, all paths must be graphs of functions
u = u(x).

The problem of finding the shortest path from A to B is equivalent to finding the function u
that minimizes the functional I(u) subject to u(0) = 0 and u(a) = b.

Example 2 (Brachistochrone problem). In 1696 Johann Bernoulli posed the following prob-
lem. Let A and B be two points in the plane with A lying above B. Suppose we connect A
and B with a thin wire and allow a bead to slide from A to B under the influence of gravity.
Assuming the bead slides without friction, what is the shape of the wire that minimizes the
travel time of the bead? Perhaps counter-intuitively, it turns out that the optimal shape is
not a straight line! The problem is commonly referred to as the brachistochrone problem—the
word brachistochrone derives from ancient Greek meaning “shortest time”.

Let g denote the acceleration due to gravity. Suppose that A = (0, 0) and B = (a, b) where
a > 0 and b < 0. Let u(x) for 0 ≤ x ≤ a describe the shape of the wire, so u(0) = 0 and
u(a) = b. Let v(x) denote the speed of the bead when it is at position x. When the bead is
at position (x, u(x)) along the wire, the potential energy stored in the bead is PE = mgu(x)
(relative to height zero), and the kinetic energy is KE = 1

2mv(x)2, where m is the mass of the
bead. By conservation of energy

1

2
mv(x)2 +mgu(x) = 0,

since the bead starts with zero total energy at point A. Therefore

v(x) =
√
−2gu(x).

Between x and x + ∆x, the bead slides a distance of approximately
√

1 + u′(x)2∆x with a
speed of v(x) =

√
−2gu(x). Hence it takes approximately

t =

√
1 + u′(x)2√
−2gu(x)

∆x
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Figure 2: Depiction of possible paths for the brachistochrone problem.

time for the bead to move from position x to x+ ∆x. Therefore the total time taken for the
bead to slide down the wire is given by

I(u) =
1√
2g

∫ a

0

√
1 + u′(x)2

−u(x)
dx.

The problem of determining the optimal shape of the wire is therefore equivalent to finding
the function u(x) that minimizes I(u) subject to u(0) = 0 and u(a) = b.

Example 3 (Minimal surfaces). Suppose we bend a piece of wire into a loop of any shape
we wish, and then dip the wire loop into a solution of soapy water. A soap bubble will form
across the loop, and we may naturally wonder what shape the bubble will take. Physics tells
us that soap bubble formed will be the one with least surface area, at least locally, compared
to all other surfaces that span the wire loop. Such a surface is called a minimal surface.

To formulate this mathematically, suppose the loop of wire is the graph of a function
g : ∂U → R, where U ⊂ R2 is open and bounded. We also assume that all possible surfaces
spanning the wire can be expressed as graphs of functions u : U → R. To ensure the surface
connects to the wire we ask that u = g on ∂U . The surface area of a candidate soap film
surface u is given by

I(u) =

∫
U

√
1 + |∇u|2 dx.

Thus, the minimal surface problem is equivalent to finding a function u that minimizes I
subject to u = g on ∂U .

Example 4 (Image restoration). A grayscale image is a function u : [0, 1]2 → [0, 1]. For
x ∈ R2, u(x) represents the brightness of the pixel at location x. In real-world applications,
images are often corrupted in the acquisition process or thereafter, and we observe a noisy
version of the image. The task of image restoration is to recover the true noise-free image
from a noisy observation.
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Let f(x) be the observed noisy image. A widely used and very successful approach to image
restoration is the so-called total variation (TV) restoration, which minimizes the functional

I(u) =

∫
U

1

2
(u− f)2 + λ|∇u| dx,

where λ > 0 is a parameter and U = (0, 1)2. The restored image is the function u that
minimizes I (we do not impose boundary conditions on the minimizer). The first term 1

2(u−f)2

is a called a fidelity term, and encourages the restored image to be close to the observed noisy
image f . The second term |∇u| measures the amount of noise in the image and minimizing
this term encourages the removal of noise in the restored image. The name TV restoration
comes from the fact that

∫
U |∇u| dx is called the total variation of u. Total variation image

restoration was pioneered by Rudin, Osher, and Fatemi [2].

Example 5 (Image segmentation). A common task in computer vision is the segmentation
of an image into meaningful regions. Let f : [0, 1]2 → [0, 1] be a grayscale image we wish
to segment. We represent possible segmentations of the image by the level sets of functions
u : [0, 1]2 → R. Each function u divides the domain [0, 1]2 into two regions defined by

R+(u) = {x ∈ [0, 1]2 : u(x) > 0} and R−(u) = {x ∈ [0, 1]2 : u(x) ≤ 0}.

The boundary between the two regions is the level set {x ∈ [0, 1]2 : u(x) = 0}.
At a very basic level, we might assume our image is composed of two regions with different

intensity levels f = a and f = b, corrupted by noise. Thus, we might propose to segment the
image by minimizing the functional

I(u, a, b) =

∫
R+(u)

(f(x)− a)2 dx+

∫
R−(u)

(f(x)− b)2 dx,

over all possible segmentations u and real numbers a and b. However, this turns out not to work
very well since it does not incorporate the geometry of the region in any way. Intuitively, a
semantically meaningful object in an image is usually concentrated in some region of the image,
and might have a rather smooth boundary. The minimizers of I could be very pathological
and oscillate rapidly trying to capture every pixel near a in one region and those near b in
another region. For example, if f only takes the values 0 and 1, then minimizing I will try to
put all the pixels in the image where f is 0 into one region, and all those where f is 1 into the
other region, and will choose a = 0 and b = 1. This is true regardless of whether the region
where f is zero is a nice circle in the center of the image, or if we randomly choose each pixel
to be 0 or 1. In the later case, the segmentation u will oscillate wildly and does not give a
meaningful result.

A common approach to fixing this issue is to include a penalty on the length of the boundary
between the two regions. Let us denote the length of the boundary between R+(u) and R−(u)
(i.e., the zero level set of u) by L(u). Thus, we seek instead to minimize the functional

I(u, a, b) =

∫
R+(u)

(f(x)− a)2 dx+

∫
R−(u)

(f(x)− b)2 dx+ λL(u),

where λ > 0 is a parameter. Segmentation of an image is therefore reduced to finding a
function u(x) and real numbers a and b minimizing I(u, a, b), which is a problem in the
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calculus of variations. This widely used approach was proposed by Chan and Vese in 2001
and is called Active Contours Without Edges [1].

The dependence of I on u is somewhat obscured in the form above. Let us write the
functional in another way. Recall the Heaviside function H is defined as

H(x) =

{
1, if x > 0

0, if x ≤ 0.

Then the region R+(u) is precisely the region where H(u(x)) = 1, and the region R−(u) is
precisely where H(u(x)) = 0. Therefore∫

R+(u)
(f(x)− a)2 dx =

∫
U
H(u(x))(f(x)− a)2 dx,

where U = (0, 1)2. Likewise∫
R−(u)

(f(x)− b)2 dx =

∫
U

(1−H(u(x))) (f(x)− b)2 dx.

We also have the identity (see Section A.10)

L(u) =

∫
U
|∇H(u(x))| dx =

∫
U
δ(u(x))|∇u(x)| dx.

Therefore we have

I(u, a, b) =

∫
U
H(u)(f − a)2 + (1−H(u)) (f − b)2 + λδ(u)|∇u| dx.

2 The Euler-Lagrange equation

We aim to study general functionals of the form

(2.1) I(u) =

∫
U
L(x, u(x),∇u(x)) dx,

where U ⊂ Rn is open and bounded, and L is a function

L : U × R× Rn → R.

The function L is called the Lagrangian. We will write L = L(x, z, p) where x ∈ U , z ∈ R and
p ∈ Rn. Thus, z represents the variable where we substitute u(x), and p is the variable where
we substitute ∇u(x). Writing this out completely we have

L = L(x1, x2, . . . , xn, z, p1, p2, . . . , pn).

The partial derivatives of L will be denoted Lz(x, z, p),

∇xL(x, z, p) = (Lx1(x, z, p), . . . , Lxn(x, z, p)),
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and
∇pL(x, z, p) = (Lp1(x, z, p), . . . , Lpn(x, z, p)).

Each example from Section 1.1 involved a functional of the general form of (2.1). For the
shortest path problem n = 1 and

L(x, z, p) = g(x1, z)
√

1 + p21.

For the brachistochrone problem n = 1 and

L(x, z, p) =

√
1 + p21
−z

.

For the minimal surface problem n = 2 and

L(x, z, p) =
√

1 + |p|2.

For the image restoration problem n = 2 and

L(x, z, p) =
1

2
(z − f(x))2 + λ|p|.

Finally, for the image segmentation problem

L(x, z, p) = H(z)(f(x)− a)2 + (1−H(z)) (f(x)− b)2 + λδ(z)|p|.

We will always assume that L is smooth, and the boundary condition g : ∂U → R is
smooth. We now give necessary conditions for minimizers of I.

Theorem 1 (Euler-Lagrange equation). Suppose that u ∈ C2(U) satisfies

(2.2) I(u) ≤ I(v)

for all v ∈ C2(U) with v = u on ∂U . Then

(2.3) Lz(x, u,∇u)− div (∇pL(x, u,∇u)) = 0 in U.

Proof. Let ϕ ∈ C∞c (U) and set v = u + tϕ for a real number t. Since ϕ = 0 on ∂U we have
u = v on ∂U . Thus, by assumption

I(u) ≤ I(v) = I(u+ tϕ) for all t ∈ R.

This means that h(t) := I(u + tϕ) has a global minimum at t = 0, i.e., h(0) ≤ h(t) for all t.
It follows that h′(t) = 0, which is equivalent to

(2.4)
d

dt

∣∣∣
t=0

I(u+ tϕ) = 0.

We now compute the derivative in (2.4). Notice that

I(u+ tϕ) =

∫
U
L(x, u(x) + tϕ(x),∇u(x) + t∇ϕ(x)) dx.
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For notational simplicity, let us suppress the x arguments from u(x) and ϕ(x). By the chain
rule
d

dt
L(x, u+ tϕ,∇u+ t∇ϕ) = Lz(x, u+ tϕ,∇u+ t∇ϕ)ϕ+∇pL(x, u+ tϕ,∇u+ t∇ϕ) · ∇ϕ.

Therefore
d

dt

∣∣∣
t=0

L(x, u+ tϕ,∇u+ t∇ϕ) = Lz(x, u,∇u)ϕ+∇pL(x, u,∇u) · ∇ϕ,

and we have
d

dt

∣∣∣
t=0

I(u+ tϕ) =
d

dt

∣∣∣
t=0

∫
U
L(x, u(x) + tϕ(x),∇u(x) + t∇ϕ(x)) dx

=

∫
U

d

dt

∣∣∣
t=0

L(x, u(x) + tϕ(x),∇u(x) + t∇ϕ(x)) dx

=

∫
U
Lz(x, u,∇u)ϕ+∇pL(x, u,∇u) · ∇ϕdx

=

∫
U
Lz(x, u,∇u)ϕdx+

∫
U
∇pL(x, u,∇u) · ∇ϕdx.(2.5)

Since ϕ = 0 on ∂U we can use the Divergence Theorem (Theorem 8) to compute∫
U
∇pL(x, u,∇u) · ∇ϕdx = −

∫
U
div (∇pL(x, u,∇u))ϕdx.

Combining this with (2.4) and (2.5) we have

0 =
d

dt

∣∣∣
t=0

I(u+ tϕ) =

∫
U

(
Lz(x, u,∇u)− div (∇pL(x, u,∇u))

)
ϕdx.

It follows from the vanishing lemma (Lemma 2 in the appendix) that

Lz(x, u,∇u)− div (∇pL(x, u,∇u)) = 0

everywhere in U , which completes the proof.

Remark 1. Theorem 1 says that minimizers of the functional I satisfy the PDE (2.3). The
PDE (2.3) is called the Euler-Lagrange equation for I.

Definition 1. A solution u of the Euler-Lagrange equation (2.3) is called a critical point of
I.

Remark 2. In dimension n = 1 we write x = x1 and p = p1. Then the Euler-Lagrange equation
is

Lz(x, u(x), u′(x))− d

dx
Lp(x, u(x), u′(x)) = 0.

Remark 3. In the proof of Theorem 1 we showed that∫
U
Lz(x, u,∇u)ϕ+∇pL(x, u,∇u) · ∇ϕdx = 0

for all ϕ ∈ C∞c (U). A function u ∈ C1(U) satisfying the above for all ϕ ∈ C∞c (U) is called
a weak solution of the Euler-Lagrange equation (2.3). Thus, weak solutions of PDEs arise
naturally in the calculus of variations.
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Example 6. Consider the problem of minimizing the Dirichlet energy

(2.6) I(u) =

∫
U

1

2
|∇u|2 − uf dx,

over all u satisfying u = g on ∂U . Here, f : U → R and g : ∂U → R are given functions, and

L(x, z, p) =
1

2
|p|2 − zf(x).

Therefore
Lz(x, z, p) = −f(x) and ∇pL(x, z, p) = p,

and the Euler-Lagrange equation is

−f(x)− div(∇u) = 0 in U.

This is Poisson’s equation
−∆u = f in U

subject to the boundary condition u = g on ∂U .

Exercise 1. Derive the Euler-Lagrange equation for the problem of minimizing

I(u) =

∫
U

1

p
|∇u|p − uf dx

subject to u = g on ∂U , where p ≥ 1.

Example 7. The Euler-Lagrange equation in dimension n = 1 can be simplified when L has
no x-dependence, so L = L(z, p). In this case the Euler-Lagrange equation reads

Lz(u(x), u′(x)) =
d

dx
Lp(u(x), u′(x)).

Using the Euler-Lagrange equation and the chain rule we compute

d

dx
L(u(x), u′(x)) = Lz(u(x), u′(x))u′(x) + Lp(u(x), u′(x))u′′(x)

= u′(x)
d

dx
Lp(u(x), u′(x)) + Lp(u(x), u′(x))u′′(x)

=
d

dx

(
u′(x)Lp(u(x), u′(x))

)
.

Therefore
d

dx

(
L(u(x), u′(x))− u′(x)Lp(u(x), u′(x))

)
= 0.

It follows that

(2.7) L(u(x), u′(x))− u′(x)Lp(u(x), u′(x)) = C

for some constant C. This form of the Euler-Lagrange equation is often easier to solve when
L has no x-dependence.
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In some of the examples presented in Section 1.1, such as the image segmentation and
restoration problems, we did not impose any boundary condition on the minimizer u. For
such problems, Theorem 1 still applies, but the Euler-Lagrange equation (2.3) is not uniquely
solvable without a boundary condition. Hence, we need some additional information about
minimizers in order for the Euler-Lagrange equation to be useful for these problems.

Theorem 2. Suppose that u ∈ C2(U) satisfies

(2.8) I(u) ≤ I(v)

for all v ∈ C2(U). Then u satisfies the Euler-Lagrange equation (2.3) with boundary condition

(2.9) ∇pL(x, u,∇u) · ν = 0 on ∂U.

Proof. By Theorem 1, u satisfies the Euler-Lagrange equation (2.3). We just need to show
that u also satisfies the boundary condition (2.9).

Let ϕ ∈ C∞(U) be a smooth function that is not necessarily zero on ∂U . Then by
hypothesis I(u) ≤ I(u+ tϕ) for all t. Therefore, as in the proof of Theorem 1 we have

(2.10) 0 =
d

dt

∣∣∣
t=0

I(u+ tϕ) =

∫
U
Lz(x, u,∇u)ϕ+∇pL(x, u,∇u) · ∇ϕdx.

Applying the Divergence Theorem (Theorem 8) we find that

0 =

∫
∂U
ϕ∇pL(x, u,∇u) · ν dS +

∫
U

(Lz(x, u,∇u)− div (∇pL(x, u,∇u)))ϕdx.

Since u satisfies the Euler-Lagrange equation (2.3), the second term above vanishes and we
have ∫

∂U
ϕ∇pL(x, u,∇u) · ν dS = 0

for all test functions ϕ ∈ C∞(U). By a slightly different version of the vanishing lemma
(Lemma 2 in the appendix) we have that

∇pL(x, u,∇u) · ν = 0 on ∂U.

This completes the proof.

2.1 The gradient interpretation

We can interpret the Euler-Lagrange equation (2.3) as the gradient of I. That is, in a certain
sense (2.3) is equivalent to ∇I(u) = 0.

To see why, let us consider a function u : Rn → R. The gradient of u is defined as the
vector of partial derivatives

∇u(x) = (ux1(x), ux2(x), . . . , uxn(x)).

By the chain rule we have

(2.11)
d

dt

∣∣∣
t=0

u(x+ tv) = ∇u(x) · v

10



for any vector v ∈ Rn. It is possible to take (2.11) as the definition of the gradient of u. By
this, we mean that w = ∇u(x) is the unique vector satisfying

d

dt

∣∣∣
t=0

u(x+ tv) = w · v

for all v ∈ Rn.
In the case of functionals I(u), we showed in the proof of Theorem 1 that

d

dt

∣∣∣
t=0

I(u+ tϕ) = 〈Lz(x, u,∇u)− div (∇pL(x, u,∇u)) , ϕ〉L2(U)

for all ϕ ∈ C∞c (U). Here, the L2-inner product plays the role of the dot product from the
finite dimensional case. Thus, it makes sense to define the gradient, also called the functional
gradient to be

(2.12) ∇I(u) := Lz(x, u,∇u)− div (∇pL(x, u,∇u)) ,

so that we have the identity

(2.13)
d

dt

∣∣∣
t=0

I(u+ tϕ) = 〈∇I(u), ϕ〉L2(U).

The reader should compare this with the ordinary chain rule (2.11). Notice the definition of
the gradient ∇I depends on the choice of the L2-inner product. Using other inner products
will result in different notions of gradient.

To numerically compute solutions of the Euler-Lagrange equation ∇I(u) = 0, we often use
gradient descent, which corresponds to solving the PDE

(2.14)

{
ut(x, t) = −∇I(u(x, t)), if (x, t) ∈ U × (0,∞)

u(x, 0) = u0(x), if (x, t) ∈ U × {t = 0}.

Gradient descent evolves u in the direction that decreases I most rapidly, starting at some
initial guess u0. If we reach a stationary point where ut = 0 then we have found a solution of
the Euler-Lagrange equation ∇I(u) = 0. If solutions of the Euler-Lagrange equation are not
unique, we may find different solutions depending on the choice of u0.

To see that gradient descent actually decreases I, let u(x, t) solve (2.14) and compute

d

dt
I(u) =

∫
U

d

dt
L(x, u(x, t),∇u(x, t)) dx

=

∫
U
Lz(x, u,∇u)ut +∇pL(x, u,∇u)∇ut dx

=

∫
U

(Lz(x, u,∇u)− div (∇pL(x, u,∇u)))ut dx

= 〈∇I(u), ut〉L2(U)

= 〈∇I(u),−∇I(u)〉L2(U)

= −‖∇I(u)‖L2(U)

≤ 0.
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We used integration by parts in the third line, mimicking the proof of Theorem 1.
Notice that by writing out the Euler-Lagrange equation we can write the gradient descent

PDE (2.14) as

(2.15)

{
ut + Lz(x, u,∇u)− div (∇pL(x, u,∇u)) = 0, in U × (0,∞)

u = u0, on U × {t = 0}.

Example 8. Gradient descent on the Dirichlet energy (2.6) is the heat equation

(2.16)

{
ut −∆u = f, in U × (0,∞)

u = u0, on U × {t = 0}.

Thus, solving the heat equation is the fastest way to decrease the Dirichlet energy.

3 Examples continued

We now continue the parade of examples by computing and solving the Euler-Lagrange equa-
tions for the examples from Section 1.1.

3.1 Shortest path

Recall for the shortest path problem we wish to minimize

I(u) =

∫ a

0
g(x, u(x))

√
1 + u′(x)2 dx,

subject to u(0) = 0 and u(a) = b. Here n = 1 and

L(x, z, p) = g(x, z)
√

1 + p2.

Therefore Lz(x, z, p) = gz(x, z)
√

1 + p2 and Lp(x, z, p) = g(x, z)(1 + p2)−
1
2 p. The Euler-

Lagrange equation is

gz(x, u(x))
√

1 + u′(x)2 − d

dx

(
g(x, u(x))(1 + u′(x)2)−

1
2u′(x)

)
= 0.

This is in general difficult to solve. In the special case that g(x, z) = 1, gz = 0 and this reduces
to

d

dx

(
u′(x)√

1 + u′(x)2

)
= 0.

Computing the derivative yields√
1 + u′(x)2u′′(x)− u′(x)(1 + u′(x)2)−

1
2u′(x)u′′(x)

1 + u′(x)2
= 0.

Multiplying both sides by
√

1 + u′(x)2 we obtain

(1 + u′(x)2)u′′(x)− u′(x)2u′′(x) = 0.

This reduces to u′′(x) = 0, hence the solution is a straight line! This verifies our intuition that
the shortest path between two points is a straight line.

12



3.2 The brachistochrone problem

Recall for the brachistochrone problem we wish to minimize

I(u) =
1√
2g

∫ a

0

√
1 + u′(x)2

−u(x)
dx,

subject to u(0) = 0 and u(a) = b. Here, n = 1 and

L(x, z, p) =

√
1 + p2

−z
.

Therefore
Lp(x, z, p) =

p√
−z(1 + p2)

.

Notice in this case that L has no x-dependence. Hence we can use the alternative form of the
Euler-Lagrange equation (2.7), which yields√

1 + u′(x)2

−u(x)
− u′(x)2√

−u(x)(1 + u′(x)2)
= C

for a constant C. Making some algebraic simplifications leads to

(3.1) u(x) + u(x)u′(x)2 = C,

where the constant C is different than the one on the previous line. The constant C should
be chosen to ensure the boundary conditions hold.

Before solving (3.1), let us note that we can say quite a bit about the solution u from the
ODE it solves. First, since u(a) = b < 0, the left hand side must be negative somewhere,
hence C < 0. Solving for u′(x)2 we have

u′(x)2 =
C − u(x)

u(x)
.

This tells us two things. First, since the left hand side is positive, so is the right hand side.
Hence C−u(x) ≤ 0 and so u(x) ≥ C. If u attains its maximum at an interior point 0 < x < a
then u′(x) = 0 and u(x) = C, hence u is constant. This is impossible, so the maximum of u
is attained at x = 0 and we have

C ≤ u(x) < 0 for 0 < x ≤ a.

This means in particular that we must select C ≤ b.
Second, as x→ 0+ we have u(x)→ 0− and hence

lim
x→0+

u′(x)2 = lim
x→0+

C − u(x)

u(x)
= lim

t→0−

C − t
t

=∞.

Since x = 0 is a local maximum of u, we have u′(x) < 0 for x > 0 small. Therefore

lim
x→0+

u′(x) = −∞.

13



This says that the optimal curve starts out vertical.
Third, we can differentiate (3.1) to find that

u′(x) + u′(x)3 + 2u(x)u′(x)u′′(x) = 0.

Therefore

(3.2) 1 + u′(x)2 = −2u(x)u′′(x).

Since the left hand side is positive, so is the right hand side, and we deduce u′′(x) > 0.
Therefore u′(x) is strictly increasing, and u is a convex function of x. In fact, we can say
slightly more. Solving for u′′(x) and using (3.1) we have

u′′(x) = −1 + u′(x)2

2u(x)
= −(1 + u′(x)2)2

2C
≥ − 1

2C
> 0.

This means that u is uniformly convex, and for large enough x we will have u′(x) > 0, so the
optimal curve could eventually be increasing.

In fact, since u′ is strictly increasing, there exists (by the intermediate value theorem) a
unique point x∗ > 0 such that u′(x∗) = 0. We claim that u is symmetric about this point,
that is

u(x∗ + x) = u(x∗ − x).

To see this, write w(x) = u(x∗ + x) and v(x) = u(x∗ − x). Then

w′(x) = u′(x∗ + x) and v′(x) = −u′(x∗ − x).

Using (3.1) we have

w(x) + w(x)w′(x) = u(x∗ + x) + u(x∗ + x)u′(x∗ + x)2 = C

and
v(x) + v(x)v′(x) = u(x∗ − x) + u(x∗ − x)u′(x∗ − x)2 = C.

Since v(0) = u(x∗) = w(0), we can use uniqueness of solutions of ODEs to show that w(x) =
v(x), which establishes the claim. The point of this discussion is that without explicitly
computing the solution, we can say quite a bit both quantitatively and qualitatively about the
solutions.

We now solve (3.1). Note we can write

u(x) =
C

1 + u′(x)2
.

Since u′ is strictly increasing, the angle θ between the tangent vector (1, u′(x)) and the vertical
(0,−1) is strictly increasing. Therefore, we can parametrize the curve in terms of this angle
θ. Let us write C(θ) = (x(θ), y(θ)). Then we have y(θ) = u(x) and

sin2 θ =
1

1 + u′(x)2
.

14



Therefore
y(θ) = C sin2 θ = −C

2
(cos(2θ)− 1).

Since y(θ) = u(x)
dy

dx
= u′(x) = −cos θ

sin θ
.

By the chain rule

x′(θ) =
dx

dθ
=
dx

dy

dy

dθ
=

(
− sin θ

cos θ

)
(2C sin θ cos θ) = −2C sin2 θ.

Therefore

x(θ) = C

∫ θ

0
cos(2θ)− 1 dt = −C

2
(2θ − sin(2θ)) .

This gives an explicit solution for the brachistochrone problem, where θ is just the parameter
of the curve.

There is a nice geometrical interpretation of the brachistochrone curve. Notice that[
x(θ)
y(θ)

]
= −C

2

[
2θ
−1

]
− C

2

[
− sin(2θ)
cos(2θ)

]
.

The first term parametrizes the line y = C/2, while the second term traverses the circle of
radius r = −C/2 in the counterclockwise direction. Thus, the curve is traced by a point on
the rim of a circular wheel as the wheel rolls along the x-axis. Such a curve is called a cycloid.

Notice that the minimum occurs when θ = π
2 , and y = C and x = −Cπ

2 . Hence the minima
of all brachistochrone curves lie on the line

x+
π

2
y = 0.

It follow that if a + π
2 b > 0, then the optimal path starts traveling steeply downhill, reaches

a low point, and then climbs uphill before arriving at the final point (a, b). If a + π
2 b ≤ 0

then the bead is always moving downhill. See Figure 3 for an illustration of the family of
brachistochrone curves.

Now, suppose instead of releasing the bead from the top of the curve, we release the bead
from some position (x0, u(x0)) further down (but before the minimum) on the brachistochrone
curve. How long does it take the bead to reach the lowest point on the curve? It turns out
this time is the same regardless of where you place the bead on the curve! To see why, we
recall that conservation of energy gives us

1

2
mv(x)2 +mgu(x) = mgu(x0),

where v(x) is the velocity of the bead. Therefore

v(x) =
√

2g(u(x0)− u(x)),

and the time to descend to the lowest point is

T =
1√
2g

∫ −Cπ
2

x0

√
1 + u′(x)2

u(x0)− u(x)
dx.
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Figure 3: Family of brachistochrone curves. The straight line is the line x + π
2 y = 0 passing

through the minima of all brachistochrone curves.

Recall that

1 + u′(x)2 =
1

sin2 θ
, u(x) = y(θ) = C sin2 θ, and dx = −2C sin2 θdθ,

where u(x0) = y(θ0) = C sin2 θ0. Making the change of variables x→ θ yields

T =

√
−2C

g

∫ π
2

θ0

sin θ√
sin2 θ − sin2 θ0

dθ =

√
−2C

g

∫ π
2

θ0

sin θ√
cos2 θ0 − cos2 θ

dθ.

Make the change of variables t = − cos θ/ cos θ0. Then cos θ0dt = sin θdθ and

T =

√
−2C

g

∫ 0

−1

1√
1− t2

dt.

We can integrate this directly to obtain

T =

√
−2C

g
(arcsin(0)− arcsin(−1)) = π

√
−C
2g

.

Notice this is independent of the initial position x0 at which the bead is released! A curve with
the property that the time taken by an object sliding down the curve to its lowest point is
independent of the starting position is called a tautochrone, or isochrone curve. So it turns out
that the tautochrone curve is the same as the brachistochrone curve. The words tautochrone
and isochrone are ancient Greek for same-time and equal-time, respectively.

3.3 Minimal surfaces

Recall for the minimal surface problem we wish to minimize

I(u) =

∫
U

√
1 + |∇u|2 dx
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subject to u = g on ∂U . Here n ≥ 2 and

L(x, z, p) =
√

1 + |p|2 =
√

1 + p11 + p22 + · · ·+ p2n.

Even though minimal surfaces are defined in dimension n = 2, it can still be mathematically
interesting to consider the general case of arbitrary dimension n ≥ 2.

From the form of L we see that Lz(x, z, p) = 0 and

∇pL(x, z, p) =
p√

1 + p2
.

Therefore, the Euler-Lagrange equation for the minimal surface problem is

(3.3) div

(
∇u√

1 + |∇u|2

)
= 0 in U

subject to u = g on ∂U . This is called the minimal surface equation. Using the chain rule, we
can rewrite the PDE as

∇

(
1√

1 + |∇u|2

)
· ∇u+

1√
1 + |∇u|2

div(∇u) = 0.

Notice that
∂

∂xj

(
1√

1 + |∇u|2

)
= −1

2
(1 + |∇u|2)−

3
2

n∑
i=1

2uxiuxixj .

Therefore the PDE in expanded form is

− 1

(1 + |∇u|2)
3
2

n∑
i,j=1

uxixjuxiuxj +
∆u√

1 + |∇u|2
= 0.

Multiplying both sides by (1 + |∇u|2)
3
2 we have

(3.4) −
n∑

i,j=1

uxixjuxiuxj + (1 + |∇u|2)∆u = 0.

which is also equivalent to

(3.5) −∇u · ∇2u∇u+ (1 + |∇u|2)∆u = 0.

Exercise 2. Show that the plane
u(x) = a · x+ b

solves the minimal surface equation on U = Rn, where a ∈ Rn and b ∈ R.

Exercise 3. Show that for n = 2 the Scherk surface

u(x) = log

(
cos(x1)

cos(x2)

)
solves the minimal surface equation on the box U = (−π

2 ,
π
2 )2.
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Notice that if we specialize to the case of n = 2 then we have

−ux1x1u2x1 − 2ux1x2ux1ux2 − ux2x2u2x2 + (1 + u2x1 + u2x2)(ux1x1 + ux2x2) = 0,

which reduces to

(3.6) (1 + u2x2)ux1x1 − 2ux1x2ux1ux2 + (1 + u2x1)ux2x2 = 0.

It is generally difficult to find solutions of the minimal surface equation (3.4). It is possible
to prove that a solution always exists and is unique, but this is outside the scope of this course.

3.4 Minimal surface of revolution

Suppose we place rings of equal radius r > 0 at locations x = −L and x = L on the x-axis.
What is the resulting minimal surface formed between the rings? In other words, if we dip
the rings into a soapy water solution, what is the shape of the resulting soap bubble?

Here, we may assume the surface is a surface of revolution. Namely, the surface is formed
by taking a function u : [−L,L] → R with u(−L) = r = u(L) and rotating it around the
x-axis. The surface area of a surface of revolution is

I(u) = 2π

∫ L

−L
u(x)

√
1 + u′(x)2 dx.

Since L(x, z, p) = z
√

1 + p2 does not have an x-dependence, the Euler-Lagrange equation can
be computed via (2.7) and we obtain

u(x)
√

1 + u′(x)2 − u′(x)2u(x)√
1 + u′(x)2

=
1

c

for a constant c 6= 0. Multiplying both sides by
√

1 + u′(x)2 and simplifying we have

(3.7) cu(x) =
√

1 + u′(x)2.

Before solving this, we make the important observation that at a minimum of u, u′(x) = 0
and hence u(x) = 1

c at the minimum. Since we are using a surface of revolution, we require
u(x) > 0, hence we must take c > 0.

We now square both sides of (3.7) and rearrange to get

(3.8) c2u(x)2 − u′(x)2 = 1.

Since u′(x)2 ≥ 0, we deduce that c2u(x)2 ≥ 1 for all. Since u(L) = r we require

(3.9) c ≥ 1

r
.

To solve (3.8), we use a clever trick: We differentiate both sides to find

2c2u(x)u′(x)− 2u′(x)u′′(x) = 0

or
u′′(x) = c2u(x).
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Notice we have converted a nonlinear ODE into a linear ODE! Since c2 > 0 the general solution
is

u(x) =
A

2
ecx +

B

2
e−cx.

It is possible to show, as we did for the brachistochrone problem, that u must be an even
function. It follows that A = B and

u(x) = A
ecx + e−cx

2
= A cosh(cx).

The minimum of u occurs at x = 0, so

A = u(0) =
1

c
.

Therefore the solution is

(3.10) u(x) =
1

c
cosh(cx).

This curve is called a catenoid, and it turns out to be the same shape as a rope hanging from
two posts of equal height under the influence of gravity. An inverted catenoid, or catenary
arch, has been used in architectural designs since ancient times.

We now need to see if it is possible to select c > 0 so that

u(−L) = r = u(L).

Since u is even, we only need to check that u(L) = r. This is equivalent choosing c > 0 so
that cosh(cL) = cr. Let us set C = cL and θ = r

L . Then we need to choose C > 0 such that

(3.11) cosh(C) = θC.

This equation is not always solvable, and depends on the value of θ = r
L , that is, on the

ratio of the radius r of the rings to L, which is half of the separation distance. There is a
threshold value θ0 such that for θ > θ0 there are two solutions C1 < C2 of (3.11). When
θ = θ0 there is one solution C, and when θ < θ0 there are no solutions. See Figure 4 for
an illustration. To rephrase this, if θ < θ0 or r < Lθ0, then the rings are too far apart and
there is no minimal surface spanning the two rings. If r ≥ Lθ0 then the rings are close enough
together and a minimal surface exists. From numerical computations, θ0 ≈ 1.509.

Now, when there are two solutions C1 < C2, which one gives the smallest surface area?
We claim it is C1. To avoid complicated details, we give here a heuristic argument to justify
this claim. Let c1 < c2 such that C1 = c1L and C2 = c2L. So we have two potential solutions

u1(x) =
1

c1
cosh(c1x) and u2(x) =

1

c2
cosh(c2x).

Since u1(0) = 1
c1
≥ 1

c2
= u2(0), we have u1 ≥ u2. In other words, as we increase c the solution

decreases. Now, as we pull the rings apart we expect the solution to decrease (the soap bubble
becomes thinner), so the value of c should increase as the rings are pulled apart. As the rings
are pulled apart L is increasing, so θ = r/L is decreasing. From Figure 4 we see that C2 is
decreasing as θ decreases. Since C2 = c2L and L is increasing, c2 must be decreasing as the
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Figure 4: When θ > θ0 there are two solutions of (3.11). When θ = θ0 there is one solution,
and when θ < θ0 there are no solutions. By numerical computations, θ0 ≈ 1.509.

Figure 5: Simulation of the minimal surface of revolution for two rings being slowly pulled
apart. The rings are located at x = −L and x = L where L ranges from (left) L = 0.095
to (right) L = 0.662, and both rings have radius r = 1. For larger L the soap bubble will
collapse.

rings are pulled apart. In other words, u2 is increasing as the rings are pulled apart, so u2
is a non-physical solution. The minimal surface is therefore given by u1. Figure 5 shows the
solutions u1 as the two rings pull apart, and Figure 6 shows non-physical solutions u2.

We can also explicitly compute the minimal surface area for c = c1. We have

(3.12) I(u) = 2π

∫ L

−L
u(x)

√
1 + u′(x)2 dx = 4πc

∫ L

0
u(x)2 dx,

where we used the Euler-Lagrange equation (3.7) and the fact that u is even in the last step

20



above. Substituting u′′(x) = c2u(x) and integrating by parts we have

I(u) =
4π

c

∫ L

0
u′′(x)u(x) dx

=
4π

c
u′(x)u(x)

∣∣∣L
0
− 4π

c

∫ L

0
u′(x)2 dx

=
4π

c
u′(L)u(L)− 4π

c

∫ L

0
u′(x)2 dx.

Using (3.8) we have u′(x)2 = c2u(x)2 − 1 and so

I(u) =
4πu(L)

c

√
c2u(L)2 − 1− 4π

c

∫ L

0
c2u(x)2 − 1 dx.

Since u(L) = r we have

I(u) =
4πr

c

√
c2r2 − 1− 4πc

∫ L

0
u(x)2 dx+

4π

c

∫ L

0
dx.

Recalling (3.12) we have

I(u) =
4πr

c

√
c2r2 − 1− I(u) +

4πL

c
.

Solving for I(u) we have

(3.13) I(u) =
2π

c

(
r
√
c2r2 − 1 + L

)
.

Notice that we have at no point used the explicit formula u(x) = 1
c cosh(cx). We have simply

used the ODE that u satisfies, some clever integration by parts, and the boundary condition
u(L) = r. There is an alternative expression for the surface area. Recall c is chosen so that
cr = cosh(cL). Thus

c2r2 − 1 = cosh2(cL)− 1 = sinh2(cL),

and we have
I(u) =

2π

c
(r sinh(cL) + L) .

While it is not possible to analytically solve for c1 and c2, we can numerically compute the
values to arbitrarily high precision with our favorite root-finding algorithm. Most root-finding
algorithms require one to provide an initial interval in which the solution is to be found. We
already showed (see (3.9)) that c ≥ 1/r. For an upper bound, recall we have the Taylor series

cosh(x) = 1 +
x2

2
+
x4

4!
+ · · · =

∞∑
k=0

x2n

(2k)!
,

and so cosh(x) ≥ x2

2 . Recall also that c1 and c2 are solutions of

cosh(cL) = cr.
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Figure 6: Illustration of solutions of the minimal surface equation that do not minimize surface
area. The details are identical to Figure 5, except that we select c2 instead of c1. Notice the
soap bubble is growing as the rings are pulled apart, which is the opposite of what we expect
to occur.

Therefore, if c
2L2

2 > cr we know that cosh(cL) > cr. This gives the bounds

1

r
≤ ci ≤

2r

L2
(i = 1, 2).

Furthermore, the point c∗ where the slope of c 7→ cosh(cL) equals r lies between c1 and c2.
Therefore

c1 < c∗ < c2,

where L sinh(c∗L) = r, or

c∗ =
1

L
sinh−1

( r
L

)
.

Thus, if cosh(c∗L) = c∗r, then there is exactly one solution c1 = c2 = c∗. If cosh(c∗L) < c∗r
then there are two solutions

(3.14)
1

r
≤ c1 < c∗ < c2 ≤

2r

L2
.

Otherwise, if cosh(c∗L) > c∗r then there are no solutions. Now that we have the bounds
(3.14) we can use any root-finding algorithm to determine the values of c1 and c2. In the code
I showed in class I used a simple bisection search.

3.5 Image restoration

Recall the total variation (TV) image restoration problem is based on minimizing

(3.15) I(u) =

∫
U

1

2
(f − u)2 + λ|∇u| dx

over all u : U → R, where U = (0, 1)2. The function f is the original noisy image, and the
minimizer u is the denoised image. Here, the Lagrangian

L(x, z, p) =
1

2
(f(x)− z)2 + λ|p|
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is not differentiable at p = 0. This causes some minor issues with numerical simulations, so it
is common to take an approximation of the TV functional that is differentiable. One popular
choice is

(3.16) Iε(u) =

∫
U

1

2
(f − u)2 + λ

√
|∇u|2 + ε2 dx,

where ε > 0 is a small parameter. When ε = 0 we get the TV functional (3.15). In this case
the Lagrangian is

Lε(x, z, p) =
1

2
(f(x)− z)2 + λ

√
|p|2 + ε2,

which is differentiable in both z and p. It is possible to prove that minimizers of Iε converge to
minimizers of I as ε→ 0, but the proof is very technical and outside the scope of this course.

So the idea is to fix some small value of ε > 0 and minimize Iε. To compute the Euler-
Lagrange equation note that

Lε,z(x, z, p) = z − f(x) and ∇pLε(x, z, p) =
λp√
|p|2 + ε2

.

Therefore the Euler-Lagrange equation is

(3.17) u− λ div

(
∇u√

|∇u|2 + ε2

)
= f in U

with homogeneous Neumann boundary conditions ∂u
∂ν = 0 on ∂U . It is almost always impos-

sible to find a solution of (3.17) analytically, so we are left to use numerical approximations.
A standard numerical method for computing solutions of (3.17) is gradient descent, as

described in Section 2.1. This is not the fastest or most efficient algorithm, but it is simple to
implement and gives nice results. The gradient descent partial differential equation is

ut + u− λ div

(
∇u√

|∇u|2 + ε2

)
= f for x ∈ U, t > 0,

with initial condition u(x, 0) = f(x) and boundary conditions ∂u
∂ν = 0 on ∂U . This is a

nonlinear heat equation where the thermal conductivity

κ =
1√

|∇u|2 + ε2

depends on ∇u. We solve the gradient descent equation marching forward in time until ut = 0,
which guarantees we have found a solution of the Euler-Lagrange equation (3.17).

Figure 7 shows a one dimensional example of denoising a signal with the TV restoration
algorithm. Notice the algorithm can remove noise while preserving the sharp discontinuities
in the signal. This suggests that minimizers of the TV restoration functional can have discon-
tinuities. Figure 8 shows an example of TV image restoration of a noisy image of Vincent hall.
The top image is the noisy image, the middle image is TV restoration with a small value of λ,
and the bottom image is TV restoration with a large value of λ. Notice that as λ is increased,
the images becomes smoother, and many fine details are removed. We also observe that for
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(b) TV denoising

Figure 7: Example of denoising a noisy signal with the total variations restoration algorithm.
Notice the noise is removed while the edges are preserved.

small λ the algorithm is capable of preserving edges and fine details while removing unwanted
noise.

The simulations presented in Figures 7 and 8 suggest that minimizers of the TV restoration
functional I can be discontinuous. This may present as counter-intuitive, since the derivative
of u is very large near a discontinuity and we are in some sense minimizing the derivative. It
is important to keep in mind, however, that we are minimizing the integral of the derivative,
and while the derivative may be large at some points, its integral can still be small.

As an example, let us consider the one dimensional case and ignore the fidelity term, since
it does not involve the derivative of u. Hence, we consider the functional

Jp(u) =

∫ 1

−1
|u′(x)|p dx,

where p ≥ 1. The TV functional corresponds to p = 1, but it is interesting to consider other
values of p to understand why p = 1 is preferred in signal processing communities. Suppose
we want to minimize Jp subject to u(−1) = 0 and u(1) = 1. It is not difficult to convince
yourself that the minimizer should be an increasing function, so we may write

Jp(u) =

∫ 1

−1
u′(x)p dx,

provided we restrict u′(x) ≥ 0. If p > 1 then the Euler-Lagrange equation is

d

dx

(
pu′(x)p−1

)
= 0,

which expands to
p(p− 1)u′(x)p−2u′′(x) = 0.

The straight line u(x) = 1
2x + 1

2 is a solution of the Euler-Lagrange equation, and hence a
minimizer since Jp is convex. When p = 1 the Euler-Lagrange equation is

d

dx
(1) = 0
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Figure 8: Example of TV image restoration: (top) noisy image (middle) TV restoration with
small value for λ, and (bottom) TV restoration with large value for λ.
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which does not even involve u! This means every increasing function is a solution of the
Euler-Lagrange equation. A Lagrangian L(x, z, p) for which every function solves the Euler-
Lagrange equation is called a null Lagrangian, and they have many important applications in
analysis.

Notice that when p = 1 and u is increasing

J1(u) =

∫ 1

−1
u′(x) dx = u(1)− u(−1) = 1− 0 = 1.

Hence, the functional J1(u) actually only depends on the boundary values u(1) and u(−1),
provided u is increasing. This is the reason why the Euler-Lagrange equation is degenerate;
every increasing function satisfying the boundary conditions u(−1) = 0 and u(1) = 1 is a
minimizer. Thus, the TV functional does not care how the function gets from u(−1) = 0
to u(1) = 1, provided the function is increasing. So the linear function u(x) = 1

2x + 1
2 is a

minimizer, but so is the sequence of functions

un(x) =


0, if − 1 ≤ x ≤ 0

nx, if 0 ≤ x ≤ 1
n

1, if 1
n ≤ x ≤ 1.

The function un has a sharp transition from zero to one with slope n between x = 0 and
x = 1/n. For each n

J1(un) =

∫ 1
n

0
ndx = 1,

so each un is a minimizer. The pointwise limit of un as n→∞ is the Heaviside function

H(x) =

{
0, if − 1 ≤ x ≤ 0

1, if 0 ≤ x ≤ 1.

So in some sense, the discontinuous function H(x) is also a minimizer. Indeed, we can compute

J1(H) =

∫ 1

−1
H ′(x) dx =

∫ 1

−1
δ(x) dx = 1,

where δ(x) is the Delta function. This explains why minimizers of the TV functional can
admit discontinuities.

Notice that if p > 1 then

Jp(un) =

∫ 1
n

0
np dx = np−1,

hence Jp(un)→∞ as n→∞. This means that a discontinuous function cannot minimize Jp
for p > 1, and the only sensible value for Jp(H) is ∞ when p > 1. Thus, if we used a version
of TV restoration where |∇u|p appeared with p > 1, we would not expect that edges and fine
details would be preserved, since discontinuities have infinite cost in this case.
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3.6 Image segmentation

Recall in the image segmentation problem we aim to minimize

I(u, a, b) =

∫
U
H(u)(f − a)2 + (1−H(u)) (f − b)2 + λδ(u)|∇u| dx

over u : U → R and real numbers a and b. Let us assume for the moment that a and b are
fixed, and I is a function of only u.

The Lagrangian

L(x, z, p) = H(z)(f(x)− a)2 + (1−H(z))(f(x)− b)2 + λδ(z)|p|

is not even continuous, due to the presence of the Heaviside function H(z) and the delta
function δ(z). This causes problems numerically, hence in practice we usually replace L by a
smooth approximation. For ε > 0 we define the smooth approximate Heaviside function

(3.18) Hε(x) =
1

2

(
1 +

2

π
arctan

(x
ε

))
.

The approximation to δ is then

(3.19) δε(x) := H ′ε(x) =
1

π

ε

ε2 + x2
.

We then form the approximation

(3.20) Iε(u) =

∫
U
Hε(u)(f − a)2 + (1−Hε(u)) (f − b)2 + λδε(u)|∇u| dx.

The Lagrangian for Iε is

Lε(x, z, p) = Hε(z)(f(x)− a)2 + (1−Hε(z))(f(x)− b)2 + λδε(z)|p|.

Therefore
Lε,z(x, z, p) = δε(z)

(
(f(x)− a)2 − (f(x)− b)2

)
+ λδ′ε(z)|p|

and
∇pLε(x, z, p) =

λδε(z)p

|p|
.

By the chain and product rules

div (∇pL(x, u(x),∇u(x))) = λ div
(
δε(u(x))∇u(x)

|∇u(x)|

)
= λ
∇δε(u(x)) · ∇u(x)

|∇u(x)|
+ λ div

(
∇u(x)

|∇u(x)|

)
= λ

δ′ε(u(x))∇u(x) · ∇u(x)

|∇u(x)|
+ λδε(u(x)) div

(
∇u(x)

|∇u(x)|

)
= λδ′ε(u(x))|∇u(x)|+ λδε(u(x)) div

(
∇u(x)

|∇u(x)|

)
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Therefore, the Euler-Lagrange equation is

(3.21) δε(u)

[
(f − a)2 − (f − b)2 − λ div

(
∇u
|∇u|

)]
= 0 in U

subject to homogeneous Neumann boundary conditions ∂u
∂ν = 0 on ∂U .

As with the image restoration problem, it is nearly impossible to solve the Euler-Lagrange
equation (3.21) analytically. Thus we are left to devise numerical algorithms to find solutions.
Here, we are minimizing over u, a, and b, which is a situation we have not encountered before.
Note that if u is fixed, then minimizing with respect to a and b is easy. Indeed, differentiating
Iε with respect to a yields

0 = −2

∫
U
Hε(u)(f − a) dx.

Therefore the optimal value for a is

(3.22) a =

∫
U Hε(u)f dx∫
U Hε(u) dx

,

which is approximately the average of f in the region where u > 0. Similarly, if u is fixed, the
optimal choice of b is

(3.23) b =

∫
U (1−Hε(u))f dx∫
U 1−Hε(u) dx

.

Since it is easy to minimize over a and b, the idea now is to consider an alternating minimization
algorithm, whereby one fixes a, b ∈ R and takes a small gradient descent step in the direction
of minimizing Iε with respect to u, and then one freezes u and updates a and b according to
(3.22) and (3.23). We repeat this iteratively until the values of a, b, and u remain unchanged
with each new iteration.

Gradient descent on Iε with respect to u is the partial differential equation

(3.24) ut + δε(u)

[
(f − a)2 − (f − b)2 − λ div

(
∇u
|∇u|

)]
= 0 for x ∈ U, t > 0

subject to homogeneous Neumann boundary conditions ∂u
∂ν = 0 on ∂U and an initial con-

dition u(x, 0) = u0(x). As with the image restoration problem, we normally replace the
non-differentiable norm |∇u| by a smooth approximation, so instead we solve the partial dif-
ferential equation

(3.25) ut + δε(u)

[
(f − a)2 − (f − b)2 − λ div

(
∇u√

|∇u|2 + ε2

)]
= 0 for x ∈ U, t > 0.

At each iteration of solving (3.25) numerically, we update the values of a and b according to
(3.22) and (3.23).

Figure 9 shows the result of segmenting the cameraman image. The bottom four images
in the figure show the evolution of the zero level set of u throughout the gradient descent
procedure resulting in the segmentation obtained in the lower right image. Figure 10 shows
that results of segmenting blurry and noisy versions of the cameraman image, to illustrate
that the algorithm is robust to image distortions.
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Figure 9: Illustration of gradient descent for segmenting the cameraman image. Top left is
the original image, and top right is the initialization of the gradient descent algorithm. The
lower four images show the evolution of the zero level set of u.
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Figure 10: Segmentation of clean, blurry, and noisy versions of the cameraman image.

4 The Lagrange multiplier

There are many problems in the calculus of variations that involve constraints on the feasible
minimizers. A classic example is the isoperimetric problem, which corresponds to finding the
shape of a simple closed curve that maximizes the enclosed area given the curve has a fixed
length `. Here we are maximizing the area enclosed by the curve subject to the constraint
that the length of the curve is equal to `.

Let I and J be functionals defined by

I(u) =

∫
U
L(x, u(x),∇u(x)) dx and J(u) =

∫
U
H(x, u(x),∇u(x)) dx.

We consider the problem of minimizing I(u) subject to the constraint J(u) = 0. The Lagrange
multiplier method gives necessary conditions that must be satisfied by any minimizer.

Theorem 3 (Lagrange multiplier). Suppose that u ∈ C2(U) satisfies J(u) = 0 and

(4.1) I(u) ≤ I(v)

for all v ∈ C2(U) with v = u on ∂U and J(v) = 0. Then there exists a real number λ such
that

(4.2) ∇I(u) + λ∇J(u) = 0 in U.

Here, ∇I and ∇J are the functional gradients of I and J , respectively, defined by (2.12).

Remark 4. The number λ in Theorem 3 is called a Lagrange multiplier.

Proof. We will give a short sketch of the proof. Let ϕ ∈ C∞c (U). Then as in Theorem 1

d

dt

∣∣∣
t=0

I(u+ tϕ) = 〈∇I(u), ϕ〉L2(U) and
d

dt

∣∣∣
t=0

J(u+ tϕ) = 〈∇J(u), ϕ〉L2(U).

Suppose that 〈∇J(u), ϕ〉L2(U) = 0. Then, up to a small approximation error

0 = J(u) = J(u+ tϕ)
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for small t. Since ϕ = 0 on ∂U , we also have u = u+ tϕ on ∂U . Thus by hypothesis

I(u) ≤ I(u+ tϕ) for all small t.

Therefore, t 7→ I(u+ tϕ) has a minimum at t = 0 and so

〈∇I(u), ϕ〉L2(U) =
d

dt

∣∣∣
t=0

I(u+ tϕ) = 0.

Hence, we have shown that for all ϕ ∈ C∞c (U)

〈∇J(u), ϕ〉L2(U) = 0 =⇒ 〈∇I(u), ϕ〉L2(U) = 0.

This says that ∇I(u) is orthogonal to everything that is orthogonal to ∇J(u). Intuitively this
must imply that ∇I(u) and ∇J(u) are co-linear; we give the proof below.

We now have three cases.
1. If ∇J(u) = 0 then 〈∇I(u), ϕ〉L2(U) = 0 for all ϕ ∈ C∞(U), and by the vanishing lemma

∇I(u) = 0. Here we can choose any real number for λ.
2. If ∇I(u) = 0 then we can take λ = 0 to complete the proof.
3. Now we can assume ∇I(u) 6= 0 and ∇J(u) 6= 0. Define

λ = −
〈∇I(u),∇J(u)〉L2(U)

‖∇J(u)‖L2(U)
and v = ∇I(u) + λ∇J(u).

By the definition of λ we can check that

〈∇J(u), v〉L2(U) = 0.

Therefore 〈∇I(u), v〉L2(U) = 0 and we have

0 = 〈∇I(u), v〉L2(U)

= 〈v − λ∇J(u), v〉L2(U)

= 〈v, v〉L2(U) − λ〈∇J(u), v〉L2(U)

= ‖v‖2L2(U).

Therefore v = 0 and so ∇I(u) + λ∇J(u) = 0. This completes the proof.

Remark 5. Notice that (4.2) is equivalent to the necessary conditions minimizers for the
augmented functional

K(u) = I(u) + λJ(u).

4.1 Isoperimetric inequality

Let C be a simple closed curve in the plane R2 of length `, and let A denote the area en-
closed by C. How large can A be, and what shape of curve yields the largest enclosed area?
This question, which is called the isoperimetric problem, and similar questions have intrigued
mathematicians for many thousands of years. The origin of the isoperimetric problem can be
traced back to a Greek mathematician Zenodorus sometime in the second century B.C.E.
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Let us consider a few examples. If C is a rectangle of width w and height h, then ` =
2(w + h) and A = wh. Since w = 1

2`− h we have

A =
1

2
`h− h2,

where h < 1
2`. The largest area for this rectangle is attained when 1

2` − 2h = 0, or h = 1
4`.

That is, the rectangle is a square! The area of the square is

A =
`2

16
.

Can we do better? We can try regular polygons with more sides, such as a pentagon,
hexagon, etc., and we will find that the area increases with the number of sides. In the limit
as the number of sides tends to infinity we get a circle, so perhaps the circle is a good guess
for the optimal shape. If C is a circle of radius r > 0 then 2πr = `, so r = `

2π and

A = πr2 =
`2

4π
.

This is clearly better than the square, since π < 4.
The question again is: Can we do better still? Is there some shape we have not thought of

that would give larger area than a circle while having the same perimeter? We might expect
the answer is no, but lack of imagination is not a convincing proof.

We will prove shortly that, as expected, the circle gives the largest area for a fixed perime-
ter. Thus for any simple closed curve C we have the isoperimetric inequality

(4.3) 4πA ≤ `2,

where equality holds only when C is a circle of radius r = `
2π .

We give here a short proof of the isoperimetric inequality (4.3) using the Lagrange multi-
plier method in the calculus of variations. Let the curve C be parametrized by (x(t), y(t)) for
t ∈ [0, 1]. For notational simplicity we write x = x1 and y = x2 in this section. Since C is a
simple closed curve, we may also assume without loss of generality that

(4.4) x(0) = y(0) = x(1) = y(1) = 0.

Let U denote the interior of C. Then the area enclosed by the curve C is

A(x, y) =

∫
U
dx =

∫
U
div(F ) dx,

where F is the vector field F (x, y) = 1
2(x, y). By the divergence theorem

A(x, y) =

∫
∂U
F · ν dS,

where ν is the outward normal to ∂U . Since ∂U = C we have

ν(t) =
(y′(t),−x′(t))√
x′(t)2 + y′(t)2

,
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and
dS =

√
x′(t)2 + y′(t)2 dt,

provided we take the curve to have positive orientation. Therefore

A(x, y) =

∫ 1

0

1

2
(x(t), y(t)) · (y′(t),−x′(t)) dt =

1

2

∫ 1

0
x(t)y′(t)− x′(t)y(t) dt.

The length of C is given by

`(x, y) =

∫ 1

0

√
x′(t)2 + y′(t)2 dt.

Thus, we wish to find functions x, y : [0, 1] → R that maximize A(x, y) subject to `(x, y) = `
and the boundary conditions (4.4).

The area and length functionals depend on two functions x(t) and y(t), which is a situation
we have not encountered yet. Similar to the case of partial differentiation of functions on Rn,
we can freeze one input, say y(t), and take the functional gradient with respect to x(t). So we
treat A and ` as functions of x(t) only, and hence z = x(t) and p = x′(t). The gradient ∇xA,
or Euler-Lagrange equation, is then given by

∇xA(x, y) =
1

2
y′(t)− d

dt

(
−1

2
y(t)

)
= y′(t)

while ∇x`(x, y) is given by

∇x`(x, y) = − d

dt

(
x′(t)√

x′(t)2 + y′(t)2

)
.

Similarly

∇yA(x, y) = −1

2
x′(t)− d

dt

(
1

2
x(t)

)
= −x′(t),

and

∇y`(x, y) = − d

dt

(
y′(t)√

x′(t)2 + y′(t)2

)
.

Then the gradients of A and ` are defined as

∇A(x, y) =

[
∇xA(x, y)
∇yA(x, y)

]
and ∇`(x, y) =

[
∇x`(x, y)
∇y`(x, y)

]
.

Following (4.2), the necessary conditions for our constrained optimization problem are

∇A(x, y) + λ∇`(x, y) = 0,

where λ is a Lagrange multiplier. This is a set of two equations

y′(t)− d

dt

(
λx′(t)√

x′(t)2 + y′(t)2

)
= 0,
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and

−x′(t)− d

dt

(
λy′(t)√

x′(t)2 + y′(t)2

)
= 0.

Integrating both sides we get

y(t)− λx′(t)√
x′(t)2 + y′(t)2

= a and x(t) +
λy′(t)√

x′(t)2 + y′(t)2
= b,

for constants a and b. Therefore

(x(t)− a)2 + (y(t)− b)2 =

(
− λy′(t)√

x′(t)2 + y′(t)2

)2

+

(
λx′(t)√

x′(t)2 + y′(t)2

)2

=
λ2y′(t)2

x′(t)2 + y′(t)2
+

λ2x′(t)2

x′(t)2 + y′(t)2

= λ2
x′(t)2 + y′(t)2

x′(t)2 + y′(t)2

= λ2.

This means that the curve C(t) = (x(t), y(t)) is a circle of radius λ centered at (a, b). Hence, as
we expected, the circle is shape with largest area given a fixed perimeter. Since the perimeter
is `(x, y) = ` we have λ = `

2π . Since x(0) = y(0) = 0, a and b must be chosen to satisfy

a2 + b2 = λ2 =
`2

4π2
.

That is, the circle must pass through the origin, due to our boundary conditions (4.4).

5 Sufficient conditions

So far, we have only shown that the Euler-Lagrange equation (2.3) is a necessary condition
that a minimizer must satisfy. This means that if u minimizes I(u), then u must satisfy the
Euler-Lagrange equation. However, solutions of the Euler-Lagrange equation need not always
be minimizers. They could be also maximizers or even saddle points as well. Consider, for
example, the minimal surface of revolution problem discussed in Section 3.4, where we found
two solutions of the Euler-Lagrange equation, but only one solution yielded the least area.
The other solution is clearly not a minimizer. For a simpler example, consider the function
f(x) = x3. The point x = 0 is a critical point, since f ′(0) = 0, but x = 0 is neither a minimum
nor maximum of f—it is a saddle point.

So a natural question concerns sufficient conditions for a solution of the Euler-Lagrange
equation to be a minimizer or maximizer. Another question concerns whether I(u) actually at-
tains its minimum or maximum. The following example shows that the minimum or maximum
need not be attained.

Example 9. Consider the problem of minimizing

I(u) =

∫ 1

0
u(x)2 + (u′(x)2 − 1)2 dx,
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subject to u(0) = 0 = u(1). We claim there is no solution to this problem. To see this, let
uk(x) be a sawtooth wave of period 2/k and amplitude 1/k. That is, uk(x) = x for x ∈ [0, 1/k],
uk(x) = 2/k−x for x ∈ [1/k, 2/k], uk(x) = x− 2/k for x ∈ [2/k, 3/k] and so on. The function
uk satisfies u′k(x) = 1 or u′k(x) = −1 at all but a finite number of points of non-differentiability.
Also 0 ≤ uk(x) ≤ 1/k. Therefore

I(uk) ≤
∫ 1

0

1

k2
dx =

1

k2
.

If the minimum exists, then

0 ≤ min
u
I(u) ≤ 1

k2

for all natural numbers k. Therefore minu I(u) would have to be zero. However, there is no
function u for which I(u) = 0. Such a function would have to satisfy u(x)2 = 0 and u′(x)2 = 1
for all x, which are not compatible conditions. Therefore, there is no minimizer of I, and
hence no solution to this problem.

The lack of differentiability of the sequence uk is not a serious problem for the example.
Indeed, we could smooth out uk without changing the fact that there exists u with I(u)
arbitrarily close to zero.

To understand what went wrong here, it is useful to consider functions of a single variable
f(x). If f ′(x) = 0 then x is a critical point, and if f ′′(x) > 0 then we know that x is a
local minimizer of f . This is often called the second derivative test. Recall that f is convex if
f ′′(x) > 0. So in the calculus of variations, we might expect convexity to play a role.

Our functionals are of the form

I(u) =

∫
U
L(x, u(x),∇u(x)) dx.

The integral is a linear operation, so we should ask that L is convex in u and ∇u. Notice in
Example 9 that

L(x, z, p) = z2 + (p2 − 1)2

is not convex in p (sketch the graph of p 7→ (p2 − 1)2). This is the source of the difficulty in
this problem.

5.1 Basic theory of convex functions

Before proceeding, we review some theory of convex functions.

Definition 2. A function u : Rn → R is convex if

(5.1) u(λx+ (1− λ)y) ≤ λu(x) + (1− λ)u(y)

for all x, y ∈ Rn and λ ∈ (0, 1).

Lemma 1. Let u : R → R be twice continuously differentiable. Then u is convex if and only
if u′′(x) ≥ 0 for all x ∈ R.
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Proof. The proof is split into two parts.
1. Assume u is convex. Let x0 ∈ R and set λ = 1

2 , x = x0 − h, and y = x0 + h for a real
number h. Then

λx+ (1− λ)y =
1

2
(x0 − h) +

1

2
(x0 + h) = x0,

and the convexity condition (5.1) yields

u(x0) ≤
1

2
u(x0 − h) +

1

2
u(x0 + h).

Therefore
u(x0 − h)− 2u(x0) + u(x0 + h) ≥ 0

for all h, and so

u′′(x0) = lim
h→0

u(x0 − h)− 2u(x0) + u(x0 + h)

h2
≥ 0.

2. Assume that u′′(x) ≥ 0 for all x ∈ R. Let x, y ∈ Rn and λ ∈ (0, 1), and set x0 =
λx+ (1− λ)y. Define

L(z) = u(x0) + u′(x0)(z − x0).
Since u′′(z) ≥ 0 for all z, the Taylor series inequality (A.4) with θ = 0 yields u(z) ≥ L(z) for
all z. Therefore

u(λx+ (1− λ)y) = u(x0) = λL(x) + (1− λ)L(y) ≤ λu(x) + (1− λ)u(y),

and so u is convex.

Theorem 4. Let u : Rn → R be twice continuously differentiable. Then u is convex if and
only if

(5.2)
n∑
i=1

n∑
j=1

uxixj (x)vivj ≥ 0 for all x, v ∈ Rn.

Proof. By the definition of convexity, Definition 2, u is convex if and only if the restriction
of u to every line in Rn is convex. That is, u is convex if and only if for every x, v ∈ Rn the
function

g(t) := u(x+ tv)

is convex in the single variable t ∈ R. By Lemma 1 g is convex if and only if g′′(t) ≥ 0 for all
t. As we computed in (A.13)

g′′(t) =

n∑
i=1

n∑
j=1

uxixj (x+ tv)vivj .

Hence, u is convex if and only if
n∑
i=1

n∑
j=1

uxixj (x+ tv)vivj ≥ 0

for all x, v ∈ Rn and t ∈ R. This completes the proof.

By Theorem 4 and Eq. (A.14) with θ = 0, if u is convex or if u satisfies (5.2) then

(5.3) u(y) ≥ u(x) +∇u(x) · (y − x)

holds for all x, y ∈ Rn. Thus a convex function lies above all of its tangent planes.

36



5.2 Convexity is a sufficient condition

We now show that a sufficient condition for a critical point, or solution of the Euler-Lagrange
equation (2.3), to be a minimum is that the mapping (z, p) → L(x, z, p) is convex for each
x ∈ U . In light of Theorem 4, this means that

(5.4) Lzz(x, z, p)t
2 + 2

n∑
i=1

Lzpi(x, z, p)tvi +

n∑
i=1

n∑
j=1

Lpipj (x, z, p)vivj ≥ 0

for all t, z ∈ R and x, v, p ∈ Rn.
Sometimes (5.4) is referred to as joint convexity in z and p, to distinguish it from the con-

dition that z 7→ L(x, z, p) and p 7→ L(x, z, p) are convex. The two notions are not equivalent.

Example 10. The function u(x) = x1x2 is not convex, since

2∑
i=1

2∑
j=1

uxixjvivj = 2v1v2

is clearly not positive for, say, v1 = 1 and v2 = −1. However, x1 7→ u(x1, x2) is convex, since
ux1x1 = 0, and x2 7→ u(x1, x2) is convex, since ux2x2 = 0. Therefore, convexity of x 7→ u(x) is
not equivalent to convexity in each variable x1 and x2 independently.

The following theorem shows that solutions of the Euler-Lagrange equation are minimizers
whenever (z, p) 7→ L(x, z, p) is convex.

Theorem 5. Assume (z, p) 7→ L(x, z, p) is convex for each x ∈ U . Let u ∈ C1(U) be a weak
solution of the Euler-Lagrange equation (2.3), as defined in Remark 3. Then I(u) ≤ I(v) for
all v ∈ C1(U) with u = v on ∂U .

Proof. Since (z, p) 7→ L(x, z, p) is convex, we can use (5.3) to show that

L(x, v, q) ≥ L(x, z, p) + Lz(x, z, p)(v − z) +∇pL(x, z, p) · (q − p)

for all x, p, q ∈ Rn and v, z ∈ R. Let v ∈ C1(U) such that u = v on ∂U , and write p = ∇u(x),
q = ∇v(x), z = u(x), and v = v(x) in the above to obtain

L(x, v,∇v) ≥ L(x, u,∇u) + Lz(x, z, p)(v − u) +∇pL(x, u,∇u) · (∇v −∇u).

We now integrate both sides over U and write ϕ = v − u to deduce

I(v) ≥ I(u) +

∫
U
Lz(x, z, p)ϕ+∇pL(x, u,∇u) · ∇ϕdx.

Since u is a weak solution of the Euler-Lagrange equation (2.3) and ϕ = 0 on ∂U we have∫
U
Lz(x, z, p)ϕ+∇pL(x, u,∇u) · ∇ϕdx = 0

and so I(v) ≥ I(u).

Exercise 4. Show that L(x, z, p) = 1
2 |p|

2 − zf(x) is jointly convex in z and p.

Exercise 5. Show that L(x, z, p) = zp1 is not jointly convex in z and p.
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A Mathematical preliminaries

A.1 Integration

Many students are accustomed to using different notation for integration in different dimen-
sions. For example, integration along the real line in R is usually written∫ b

a
u(x) dx,

while integration over a region U ⊂ R2 is written∫∫
U
u(x, y) dxdy or

∫∫
U
u(x) dx,

where x = (x, y). Integration over a volume U ⊂ R3 is then written as∫∫∫
U
u(x, y, z) dxdydz or

∫∫∫
U
u(x) dx.

This becomes cumbersome when we consider problems in an arbitrary number of dimensions
n. First, what shall we call the fourth variable (well, sometimes it is time t, but then what is
the fifth?). Second, integration over a set U ⊂ Rn is written with n integrals

∫∫
· · ·
∫
U . This

becomes a notational inconvenience and makes it difficult to communicate mathematically.
In these notes, we use x (or y or z) for a point in Rn, so x = (x1, x2, . . . , xn) ∈ Rn. We

write
u(x) = u(x1, x2, . . . , xn)

for a function u : Rn → R. The integration of u over a domain U ⊂ Rn is then written∫
U
u(x) dx or just

∫
U
u dx,

where dx = dx1dx2 · · · dxn. This notation has the advantage of being far more compact
without losing the meaning.

We may interpret the integral
∫
U u dx in the Riemann or Lebesgue sense. To interpret the

integral in the Riemann sense, we partition the domain into M rectangles and approximate
the integral by a Riemann sum ∫

U
u dx ≈

M∑
k=1

u(xk)∆xk,

where xk ∈ Rn is a point in the kth rectangle, and ∆xk := ∆xk,1∆xk,2 · · ·∆xk,n is the n-
dimensional volume (or measure) of the kth rectangle (∆k,i for i = 1, . . . , n are the side
lengths of the kth rectangle). Then the Riemann integral is defined by taking the limit as
the largest side length in the partition tends to zero (provided the limit exists and does not
depend on the choice of partition or points xk).

Notice here that xk = (xk,1, . . . , xk,n) ∈ Rn is a point in Rn, and not the kth entry of x.
There is a slight abuse of notation here; the reader will have to discern from the context which
is implied.
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The Lebesgue integral is more robust that the Riemann integral and is preferred in more
rigorous texts. We refer the reader to a standard graduate analysis book (such as Rudin’s
“Real and Complex Analysis”) for the definition of the Lebesgue integral.

If S ⊂ Rn is an n − 1 dimensional (or possibly lower dimensional) surface, we write the
surface integral of u over S as ∫

S
u(x) dS(x).

Here, dS(x) is the surface area element at x ∈ S.

A.2 Inequalities

For x ∈ Rn the norm of x is
|x| :=

√
x21 + x22 + · · ·+ x2n.

When n = 2 or n = 3, |x − y| is the usual Euclidean distance between x and y. The dot
product between x, y ∈ Rn is

x · y =

n∑
i=1

xiyi.

Notice that
|x|2 = x · x.

Simple inequalities, when used in a clever manner, are very powerful tools in the study of
partial differential equations. We give a brief overview of some commonly used inequalities
here.

The Cauchy-Schwarz inequality states that

|x · y| ≤ |x||y|.

To prove the Cauchy-Schwarz inequality find the value of t that minimizes

h(t) := |x+ ty|2.

For x, y ∈ Rn

|x+ y|2 = (x+ y) · (x+ y) = x · x+ x · y + y · x+ y · y.

Therefore
|x+ y|2 = |x|2 + 2x · y + |y|2.

Using the Cauchy-Schwarz inequality we have

|x+ y|2 ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2 .

Taking square roots of both sides we have the triangle inequality

|x+ y| ≤ |x|+ |y| .

For x, y ∈ Rn the triangle inequality yields

|x| = |x− y + y| ≤ |x− y|+ |y|.
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Rearranging we obtain the reverse triangle inequality

|x− y| ≥ |x| − |y|.

For real numbers a, b we have

0 ≤ (a− b)2 = a2 − 2ab+ b2.

Therefore

ab ≤ 1

2
a2 +

1

2
b2.

This is called Cauchy’s inequality.

A.3 Partial derivatives

The partial derivative of a function u = u(x1, x2, . . . , xn) in the xi variable is defined as

∂u

∂xi
(x) := lim

h→0

u(x+ hei)− u(x)

h
,

provided the limit exists. Here e1, e2, . . . , en are the standard basis vectors in Rn, so ei =
(0, . . . , 0, 1, 0, . . . , 0) ∈ Rn has a one in the ith entry. For simplicity of notation we will write

uxi =
∂u

∂xi
.

The gradient of a function u : Rn → R is the vector of partial derivatives

∇u(x) := (ux1(x), ux2(x), . . . , uxn(x)).

We will treat the gradient as a column vector for matrix-vector multiplication.
Higher derivatives are defined iteratively. The second derivatives of u are defined as

∂2u

∂xixj
:=

∂

∂xi

(
∂u

∂xj

)
.

This means that
∂2u

∂xixj
(x) = lim

h→0

1

h

(
∂u

∂xj
(x+ hei)−

∂u

∂xj
(x)

)
,

provided the limit exists. As before, we write

uxixj =
∂2u

∂xixj

for notational simplicity. When uxixj and uxjxi exist and are continuous we have

uxixj = uxjxi ,

that is the second derivatives are the same regardless of which order we take them in. We
will generally always assume our functions are smooth (infinitely differentiable), so equality of
mixed partials is always assumed to hold.
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The Hessian of u : Rn → R is the matrix of all second partial derivatives

∇2u(x) := (uxixj )
n
i,j=1 =


ux1x1 ux1x2 ux1x3 · · · ux1xn
ux2x1 ux2x2 ux2x3 · · · ux2xn
ux3x1 ux3x2 ux3x3 · · · ux3xn
...

...
...

. . .
...

uxnx1 uxnx2 uxnx3 · · · uxnxn


Since we have equality of mixed partials, the Hessian is a symmetric matrix, i.e., (∇2u)T =
∇2u. Since we treat the gradient ∇u as a column vector, the product ∇2u(x)∇u(x) denotes
the Hessian matrix multiplied by the gradient vector. That is,

[∇2u(x)∇u(x)]j =
n∑
i=1

uxixjuxi .

Given a vector field F : Rn → Rn where F (x) = (F 1(x), F 2(x), . . . , Fn(x)), the divergence
of F is defined as

divF (x) :=
n∑
i=1

F ixi(x).

The Laplacian of a function u : Rn → R is defined as

∆u := div(∇u) =
n∑
i=1

uxixi .

A.4 Rules for differentiation

Most of the rules for differentiation from single variable calculus carry over to multi-variable
calculus.

Chain rule: If v(t) = (v1(t), v2(t), . . . , vn(t)) is a function v : R → Rn, and u : Rn → R,
then

(A.1)
d

dt
u(v(t)) = ∇u(v(t)) · v′(t) =

n∑
i=1

uxi(v(t))v′i(t).

Here v′(t) = (v′1(t), v
′
2(t), . . . , v

′
n(t)).

If F (x) = (F 1(x), F 2(x), . . . , Fn(x) is a function F : Rn → Rn then

∂

∂xj
u(F (x)) = ∇u(F (x)) · Fxj (x) =

n∑
i=1

uxi(F (x))F ixj (x),

where Fxj = (F 1
xj , F

2
xj , . . . , F

n
xj ). This is a special case of (A.1) with t = xj .

Product rule: Given two functions u, v : Rn → R, we have

∇(uv) = u∇v + v∇u.

This is entry-wise the usual product rule for single variable calculus.
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Given a vector field F : Rn → Rn and a function u : Rn → R we have

∂

∂xi
(uF i) = uxiF

i + uF ixi .

Therefore
div(uF ) = ∇u · F + u divF.

Exercise 6. Let |x| =
√
x21 + · · ·+ x2n.

(a) Show that for x 6= 0
∂

∂xi
|x| = xi

|x|
.

(b) Show that for x 6= 0
∂2

∂xi∂xj
|x| = δij

|x|
− xixj
|x|3

,

where δij is the Kronecker delta defined by

δij =

{
1, if i = j

0, if i 6= j.

(c) Show that for x 6= 0

∆|x| = n− 1

|x|
.

Exercise 7. Find all real numbers α for which u(x) = |x|α is a solution of Laplace’s equation

∆u(x) = 0 for x 6= 0.

Exercise 8. Let 1 ≤ p ≤ ∞. The p-Laplacian is defined by

∆pu := div
(
|∇u|p−2∇u

)
for 1 ≤ p <∞, and

∆∞u :=
1

|∇u|2
n∑
i=1

n∑
j=1

uxixjuxiuxj .

Notice that ∆2u = ∆u. A function u is called p-harmonic if ∆pu = 0.

(a) Show that
∆pu = |∇u|p−2 (∆u+ (p− 2)∆∞u) .

(b) Show that

∆∞u = lim
p→∞

1

p
|∇u|2−p∆pu.

Exercise 9. Let 1 ≤ p ≤ ∞. Find all real numbers α for which the function u(x) = |x|α is
p-harmonic away from x = 0.
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A.5 Taylor series

A.5.1 One dimension

Let u : R → R be twice continuously differentiable. Then by the fundamental theorem of
calculus

u(y)− u(x) =

∫ y

x
u′(t) dt =

∫ y

x
u′(x) + u′(t)− u′(x) dt.

Since
∫ y
x u
′(x) dt = u′(x)(y − x), it follows that

u(y) = u(x) + u′(x)(y − x) +R2(x, y),

where R2 is the remainder given by

R2(x, y) =

∫ y

x
u′(t)− u′(x) dt.

Applying the fundamental theorem again we have

(A.2) R2(x, y) =

∫ y

x

∫ t

x
u′′(s) ds dt.

Let C > 0 denote the maximum value of |u′′(s)|. Assuming, without loss of generality, that
y > x we have

|R2(x, y)| ≤
∣∣∣∣∫ y

x
C|t− x| dt

∣∣∣∣ =
C

2
|y − x|2.

Exercise 10. Verify the final equality above.

When |g(y)| ≤ C|y|k we write g ∈ O(|y|k). Thus R2(x, y) ∈ O(|y − x|2) and we have
deduced the first order Taylor series

(A.3) u(y) = u(x) + u′(x)(y − x) +O(|y − x|2).

A Taylor series expresses the fact that a sufficiently smooth function can be well-approximated
locally by its tangent line. It is important to keep in mind that the constant C hidden in the
O((y− x)2) term depends on how large |u′′| is. Also note that we can choose C > 0 to be the
maximum of |u′′(s)| for s between x and y, which may be much smaller than the maximum
of |u′(s)| over all s (which may not exist).

Suppose for a moment that u′′(s) ≥ θ for all s. Then by (A.2) we have

R2(x, y) ≥ θ
∫ y

x

∫ t

x
ds dt =

θ

2
(y − x)2.

provided y > x. If x > y then

R2(x, y) =

∫ x

y

∫ x

t
u′′(s) ds dt ≥ θ

∫ y

x

∫ t

x
ds dt =

θ

2
(y − x)2.

Either way we have

(A.4) u(y) ≥ u(x) + u′(x)(y − x) +
θ

2
(y − x)2.
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It is useful sometimes to continue the Taylor series to higher order terms. For this, suppose
u is three times continuously differentiable. We first write the Taylor series with remainder
for u′(t)

u′(t) = u′(x) + u′′(x)(t− x) +

∫ t

x

∫ τ

x
u′′′(s) ds dτ.

Proceeding as before, we use the fundamental theorem of calculus to find

u(y) = u(x) +

∫ y

x
u′(t) dt

= u(x) +

∫ y

x
u′(x) + u′′(x)(t− x) +

∫ t

x

∫ τ

x
u′′′(s) ds dτ dt

= u(x) + u′(x)(y − x) +
1

2
u′′(x)(y − x)2 +R3(x, y),

where

R3(x, y) =

∫ y

x

∫ t

x

∫ τ

x
u′′′(s) ds dτ dt.

As before, let C > 0 denote the maximum value of |u′′′(s)|. Then

|R3(x, y)| ≤ C

6
|y − x|3.

Exercise 11. Verify the inequality above.

Therefore R3 ∈ O(|y − x|3) and we have the second order Taylor expansion

(A.5) u(y) = u(x) + u′(x)(y − x) +
1

2
u′′(x)(y − x)2 +O(|y − x|3).

The second order Taylor series says that a sufficiently smooth function can be approximated
up to O((y − x)3) accuracy with a parabola. Again, we note that the constant C > 0 hidden
in O((y − x)3) depends on the size of |u′′′(s)|, and C > 0 may be chosen as the maximum of
|u′′′(s)| over s between x and y.

A.5.2 Higher dimensions

Taylor series expansions for functions u : Rn → R follow directly from the one dimensional
case and the chain rule. Suppose u is twice continuously differentiable and fix x, y ∈ Rn. For
t ∈ R define

ϕ(t) = u(x+ (y − x)t).

Since ϕ is a function of one variable t, we can use the one dimensional Taylor series to obtain

(A.6) ϕ(t) = ϕ(0) + ϕ′(0)t+O(|t|2).

The constant in the O(|t|2) term depends on the maximum of |ϕ′′(t)|. All that remains is to
compute the derivatives of ϕ. By the chain rule

(A.7) ϕ′(t) =

n∑
i=1

uxi(x+ (y − x)t)(yi − xi),
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and

ϕ′′(t) =
d

dt

n∑
i=1

uxi(x+ (y − x)t)(yi − xi)

=

n∑
i=1

d

dt
uxi(x+ (y − x)t)(yi − xi)

=

n∑
i=1

n∑
j=1

uxixj (x+ (y − x)t)(yi − xi)(yj − xj).(A.8)

In particular

ϕ′(0) =
n∑
i=1

uxi(x)(yi − xi) = ∇u(x) · (y − x),

and so (A.6) with t = 1 becomes

u(y) = u(x) +∇u(x) · (y − x) +R2(x, y),

where R2(x, y) satisfies |R2(x, y)| ≤ 1
2 maxt |ϕ′′(t)|. Let C > 0 denote the maximum value of

|uxixj (z)| over all z, i and j. Then by (A.8)

|ϕ′′(t)| ≤ C
n∑
i=1

n∑
j=1

|yi − xi||yj − xj | ≤ Cn2|x− y|2.

It follows that |R2(x, y)| ≤ C
2 n

2|x−y|2, hence R2(x, y) ∈ O(|x−y|2) and we arrive at the first
order Taylor series

(A.9) u(y) = u(x) +∇u(x) · (y − x) +O(|x− y|2).

This says that u can be locally approximated near x to order O(|x−y|2) by the affine function

L(y) = u(x) +∇u(x) · (y − x).

We can continue this way to obtain the second order Taylor expansion. We assume now
that u is three times continuously differentiable. Using the one dimensional second order
Taylor expansion we have

(A.10) ϕ(t) = ϕ(0) + ϕ′(0)t+
1

2
ϕ′′(0)t2 +O(|t|3).

The constant in the O(|t|3) term depends on the maximum of |ϕ′′′(t)|. Notice also that

ϕ′′(0) =
n∑
i=1

n∑
j=1

uxixj (x)(yi − xi)(yj − xj) = (y − x) · ∇2u(x)(y − x),

where ∇2u(x) is the Hessian matrix. Plugging this into (A.10) with t = 1 yields

u(y) = u(x) +∇u(x) · (y − x) +
1

2
(y − x) · ∇2u(x)(y − x) +R3(x, y),
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where R3(x, y) satisfies |R3(x, y)| ≤ 1
6 maxt |ϕ′′′(t)|. We compute

ϕ′′′(t) =
n∑
i=1

n∑
j=1

d

dt
uxixj (x+ (y − x)t)(yi − xi)(yj − xj)

=

n∑
i=1

n∑
j=1

n∑
k=1

uxixjxk(x+ (y − x)t)(yi − xi)(yj − xj)(yk − xk).

Let C > 0 denote the maximum value of |uxixjxk(z)| over all z, i, j, and k. Then we have

|ϕ′′′(t)| ≤ C
n∑
i=1

n∑
j=1

n∑
k=1

|yi − xi||yj − xj ||yk − xk| ≤ Cn3|x− y|3.

Therefore |R3(x, y)| ≤ C
6 n

3|x − y|3 and so R3 ∈ O(|x − y|3). Finally we arrive at the second
order Taylor expansion

(A.11) u(y) = u(x) +∇u(x) · (y − x) +
1

2
(y − x) · ∇2u(x)(y − x) +O(|x− y|3).

This says that u can be locally approximated near x to order O(|x − y|3) by the quadratic
function

L(y) = u(x) +∇u(x) · (y − x) +
1

2
(y − x) · ∇2u(x)(y − x).

Notice that by (A.8), the second derivative of u at x in the direction v ∈ Rn is given by

d2

dt2
u(x+ tv) =

n∑
i=1

n∑
j=1

uxixj (x)vivj .

Let us suppose that all the second derivatives of u are lower bounded by θ, that is we assume

(A.12)
n∑
i=1

n∑
j=1

uxixj (x)vivj ≥ θ|v|2 for all x, v ∈ Rn.

Now set ϕ(t) = u(x+ tv) and note that

ϕ′(t) =

n∑
i=1

uxi(x+ tv)vi = ∇u(x+ tv) · v,

and

(A.13) ϕ′′(t) =
n∑
i=1

n∑
j=1

uxixj (x+ tv)vivj ≥ θ|v|2.

Therefore by (A.4) we have

ϕ(t) ≥ ϕ(0) + ϕ′(0)t+
θ

2
|v|2t2.
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Substituting the expressions above we have

u(x+ tv) ≥ u(x) +∇u(x) · v +
θ

2
|v|2t2.

Finally we set v = y − x and t = 1 to obtain

(A.14) u(y) ≥ u(x) +∇u(x) · (y − x) +
θ

2
|y − x|2.

A.6 Topology

We will have to make use of basic point-set topology. We define the open ball of radius r > 0
centered at x0 ∈ Rn by

B0(x0, r) := {x ∈ Rn : |x− x0| < r}.

The closed ball is defined as

B(x0, r) := {x ∈ Rn : |x− x0| ≤ r}.

Definition 3. A set U ⊂ Rn is called open if for each x ∈ U there exists r > 0 such that
B(x, r) ⊂ U .

Exercise 12. Let U, V ⊂ Rn be open. Show that

W := U ∪ V := {x ∈ Rn : x ∈ U or x ∈ V }

is open.

Definition 4. We say that a sequence {xk}∞k=1 in Rn converges to x ∈ Rn, written xk → x, if

lim
k→∞

|xk − x| = 0.

Definition 5. The closure of a set U ⊂ Rn, denotes U , is defined as

U := {x ∈ Rn : there exists a sequence xk ∈ U such that xk → x}.

The closure is the set of points that can be reached as limits of sequences belonging to U .

Definition 6. We say that a set U ⊂ Rn is closed if U = U .

Exercise 13. Another definition of closed is: A set U ⊂ Rn is closed if the complement

Rn \ U := {x ∈ Rn : x 6∈ U}

is open. Verify that the two definitions are equivalent [This is not a trivial exercise].

Definition 7. We define the boundary of an open set U ⊂ Rn, denoted ∂U , as

∂U := U \ U.
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Example 11. The open ball B0(x, r) is open, and its closure is the closed ball B(x, r). The
boundary of the open ball B0(x, r) is

∂B0(x0, r) := {x ∈ Rn : |x− x0| = r}.

It is a good idea to verify each of these facts from the definitions.

We defined the boundary only for open sets, but is can be defined for any set.

Definition 8. The interior of a set U ⊂ Rn, denoted int(U), is defined as

int(U) := {x ∈ U : B(x, r) ⊂ U for small enough r > 0}.

Exercise 14. Show that U ⊂ Rn is open if and only if int(U) = U .

We can now define the boundary of an arbitrary set U ⊂ Rn.

Definition 9. We define the boundary of a set U ⊂ Rn, denoted ∂U , as

∂U := U \ int(U).

Exercise 15. Verify that
∂B(x, r) = ∂B0(x, r).

Definition 10. We say a set U ⊂ Rn is bounded if there exists M > 0 such that |x| ≤M for
all x ∈ U .

Definition 11. We say a set U ⊂ Rn is compact if U is closed and bounded.

Definition 12. For open sets V ⊂ U ⊂ Rn we say that V is compactly contained in U if V is
compact and V ⊂ U . If V is compactly contained in U we write V ⊂⊂ U .

A.7 Function spaces

For an open set U ⊂ Rn we define

Ck(U) :=
{
Functions u : U → R that are k-times continuously differentiable on U

}
.

The terminology k-times continuously differentiable means that all kth-order partial derivatives
of u exist and are continuous on U . We write C0(U) = C(U) for the space of functions that
are continuous on U .

Exercise 16. Show that the function u(x) = x2 for x > 0 and u(x) = −x2 for x ≤ 0 belongs
to C1(R) but not to C2(R).

We also define

C∞(U) :=

∞⋂
k=1

Ck(U)

to be the space of infinitely differentiable functions. Functions u ∈ C∞(U) are called smooth.
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Definition 13. The support of a function u : U → R is defined as

supp(u) := {x ∈ U : u(x) 6= 0}.

Definition 14. We say that u : U → R is compactly supported in U if supp(u) ⊂⊂ U .

A function u is compactly supported in U if u vanishes near the boundary ∂U . Finally for
k ∈ N ∪ {∞} we write

Ckc (U) := {u ∈ Ck(U) : u is compactly supported in U}.

For a function u : U → R we define the L2-norm of u to be

‖u‖L2(U) :=

(∫
U
u2 dx

) 1
2

.

For two functions u, v : U → R we define the L2-inner product of u and v to be

〈u, v〉L2(U) :=

∫
U
u v dx.

Notice that
‖u‖2L2(U) = 〈u, u〉L2(U).

We also define

L2(U) :=
{
Functions u : U → R for which ‖u‖L2(U) <∞

}
.

L2(U) is a Hilbert space (a complete inner-product space). We will often write ‖u‖ in place of
‖u‖L2(U) and 〈u, v〉 in place of 〈u, v〉L2(U) when it is clear from the context that the L2 norm
is intended.

As before, we have the Cauchy-Schwarz inequality

〈u, v〉L2(U) ≤ ‖u‖L2(U)‖v‖L2(U).

We also have
‖u+ v‖2L2(U) = ‖u‖2L2(U) + 2〈u, v〉L2(U) + ‖v‖2L2(U).

Applying the Cauchy-Schwarz inequality we get the triangle inequality

‖u+ v‖L2(U) ≤ ‖u‖L2(U) + ‖v‖L2(U),

and the reverse triangle inequality

‖u− v‖L2(U) ≥ ‖u‖L2(U) − ‖v‖L2(U).
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A.8 Integration by parts

All of the sets U ⊂ Rn that we work with will be assumed to be open and bounded with a
smooth boundary ∂U . A set U ⊂ Rn has a smooth boundary if at each point x ∈ ∂U we can
make an orthogonal change of coordinates so that for some r > 0, ∂U ∩ B(0, r) is the graph
of a smooth function u : Rn−1 → R. If ∂U is smooth, we can define an outward normal vector
ν = ν(x) at each point x ∈ ∂U , and ν varies smoothly with x. Here, ν = (ν1, . . . , νn) ∈ Rn
and ν is a unit vector so

|ν| =
√
ν21 + · · ·+ ν2n = 1.

The normal derivative of u ∈ C1(U) at x ∈ ∂U is

∂u

∂ν
(x) := ∇u(x) · ν(x).

Integration by parts in Rn is based on the Gauss-Green Theorem.

Theorem 6 (Gauss-Green Theorem). Let U ⊂ Rn be an open and bounded set with a smooth
boundary ∂U . If u ∈ C1(U) then ∫

U
uxi dx =

∫
∂U
uνi dS.

The Gauss-Green Theorem is the natural extension of the fundamental theorem of calculus
to dimensions n ≥ 2. A proof of the Gauss-Green Theorem is outside the scope of this course.

We can derive a great many important integration by parts formulas from the Gauss-Green
Theorem. These identities are often referred to as Green’s identities or simply integration by
parts.

Theorem 7 (Integration by parts). Let U ⊂ Rn be an open and bounded set with a smooth
boundary ∂U . If u, v ∈ C2(U) then

(i)
∫
U
u∆v dx =

∫
∂U
u
∂v

∂ν
dS −

∫
U
∇u · ∇v dx,

(ii)
∫
U
u∆v − v∆u dx =

∫
∂U
u
∂v

∂ν
− v∂u

∂ν
dS, and

(iii)
∫
U

∆v dx =

∫
∂U

∂v

∂ν
dS.

Proof. (i) Notice that
∂xi(uvxi) = uxivxi + uvxixi .

Applying the Gauss-Green Theorem to uvxi we have∫
∂U
uvxiνi dS =

∫
U
uxivxi + uvxixi dx.

Summing over i we have ∫
∂U
u
∂v

∂ν
dS =

∫
U
∇u · ∇v + u∆v dx,

which is equivalent to (i).
(ii) Swap the roles of u and v in (i) and subtract the resulting identities to prove (ii).
(iii) Take u = 1 in (i).
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It will also be useful to prove the following version of the divergence theorem. Recall that
for a vector field F (x) = (F 1(x), . . . , Fn(x)) the divergence of F is

div(F ) = F 1
x1 + F 2

x2 + · · ·+ Fnxn .

Theorem 8 (Divergence theorem). Let U ⊂ Rn be an open and bounded set with a smooth
boundary ∂U . If u ∈ C1(U) and F is a C1 vector field (i.e., F i ∈ C1(U) for all i) then∫

U
u div(F ) dx =

∫
∂U
uF · ν dS −

∫
U
∇u · F dx.

Proof. The proof is similar to Theorem 7 (i). Notice that

(uF i)xi = uxiF
i + uF ixi ,

and apply the Gauss-Green Theorem to find that∫
∂U
uF iνi dS =

∫
U
uxiF

i + uF ixi dx.

Summing over i we have ∫
∂U
uF · ν dS =

∫
U
∇u · F + u div(F ) dx,

which is equivalent to the desired result.

Notice that when u = 1 Theorem 8 reduces to∫
U
div(F ) dx =

∫
∂U
F · ν dS,

which is the usual divergence theorem. If we take F = ∇v for v ∈ C2(U), then we recover
Theorem 7 (i).

Exercise 17. Let u,w ∈ C2(U) where U ⊂ Rn is open and bounded. Show that for 1 ≤ p <∞∫
U
u∆pw dx =

∫
∂U
u |∇w|p−2∂w

∂ν
dS −

∫
U
|∇w|p−2∇u · ∇w dx.

The p-Laplacian ∆p was defined in Exercise 8.

A.9 Vanishing lemma

Lemma 2. Let U ⊂ Rn be open and bounded and let u ∈ C(U). If∫
U
u(x)ϕ(x) dx = 0 for all ϕ ∈ C∞c (U)

then u(x) = 0 for all x ∈ U .
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Proof. Let us sketch the proof. Assume to the contrary that u(x0) 6= 0 at some x0 ∈ U . We
may assume, without loss of generality that ε := u(x0) > 0. Since u is continuous, there exists
δ > 0 such that

u(x) ≥ ε

2
whenever |x− x0| < δ.

Now let ϕ ∈ C∞c (U) be a test function satisfying ϕ(x) > 0 for |x − x0| < δ and ϕ(x) = 0 for
|x− x0| ≥ δ. Then

0 =

∫
U
u(x)ϕ(x) dx =

∫
B(x0,δ)

u(x)ϕ(x) dx ≥ ε

2

∫
B(x0,δ)

ϕ(x) dx > 0,

which is a contradiction.

A test function satisfying the requirements in the proof of Lemma 2 is given by

ϕ(x) =

{
exp

(
− 1
δ2−|x−x0|2

)
, if |x− x0| < δ

0, if |x− x0| ≥ δ.

In Math 5587 Homework 11 Problem 5 we proved that a similar function in n = 1 dimensions
was smooth.

A.10 Total variation of characteristic function is perimeter

Let u : R2 → R be a smooth function, and suppose the zero level set

C = {x ∈ R2 : u(x) = 0}

is a smooth simple closed curve. We give here a short informal proof that the length of C,
denote L(u), is given by

(A.15) L(u) =

∫
R2

|∇H(u(x))| dx =

∫
R2

δ(u(x))|∇u(x)| dx,

where H : R→ R is the Heaviside function defined by

H(x) =

{
1, if x > 0

0, if x ≤ 0.

We note that the second equality in (A.15) is just the chain rule.
Since L(u) is the length of the zero level set of u, the value L(u) depends only on the zero

level set. Thus, if v : R2 → R is any other smooth function for which

(A.16) {x ∈ R2 : u(x) = 0} = C = {x ∈ R2 : v(x) = 0}

then L(u) = L(v). If we also assume that

(A.17) U := {x ∈ R2 : u(x) > 0} = {x ∈ R2 : v(x) > 0}

then H(u(x)) = H(v(x)) and hence the right hand side of (A.15) is identical for u and v.
Hence, instead of proving (A.15) for u, we may prove it for any v satisfying (A.16) and (A.17).
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Let us choose v to be the signed distance function to the zero level set C of u. That is, we
define

(A.18) v(x) =

{
dist(x,C), if x ∈ U
−dist(x,C), if x 6∈ U,

where
dist(x,C) = min

y∈C
|x− y|.

Then (A.16) and (A.17) hold, and |∇v(x)| = 1.1 To see why |∇v| = 1, recall that

|∇v(x)| = ∇v(x) ·
(
∇v(x)

|∇v(x)|

)
=

d

dt

∣∣∣
t=0

v(x+ tp),

where p = ∇v(x)
|∇v(x)| . So |∇v(x)| is the rate of change of v in the direction of the gradient, and

the gradient is the direction of steepest ascent. For the distance function (A.18) the greatest
rate of change is 1, since v is the distance to C.

Now let us define
A(t) =

∫
R2

H(v(x) + t) dx

for t ∈ R. The quantity A(t) represents the area of the set U(t) = {x ∈ R2 : v(x) > −t}. We
may assume, without loss of generality, that U is the interior of C. Then for t > 0, U ⊂ U(t),
and since |∇v| = 1 the set U(t) is larger than U by a distance of t in the normal direction to
the boundary. Hence

A(t)−A(0) ≈ L(v)t = L(u)t.

Dividing by t and sending t to zero we have

L(u) = A′(0) =

∫
R2

δ(v(x)) dx =

∫
R2

|∇H(v)| dx =

∫
R2

|∇H(u)| dx.

This establishes the claim.
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