## Math 5588 - Homework 10 (Due Thursday April 13)

1. Compute the six elemental stiffness values $k_{i j}^{s}=k_{j i}^{s}$ for an equilateral triangle.
2. Suppose your domain is triangulated by equilateral triangles. Calculate the nonzero values of $k_{i j}=\sum_{s=1}^{M} k_{i j}^{s}$ in the case that vertex $i$ is an interior vertex (that is, not on the boundary).
3. Solve Burger's equation $u_{t}+u u_{x}=0$ with initial condition $u(x, 0)=x$.
4. Solve $u_{t}+u^{2} u_{x}=0$ with $u(x, 0)=2+x$. Sketch the characteristics.
5. Solve Burger's equation $u_{t}+u u_{x}=0$ with initial condition $u(x, 0)=f(x)$ where

$$
f(x)= \begin{cases}2, & \text { if } x<-1 \\ 1, & \text { if }-1<x<0 \\ 0, & \text { if } x>0\end{cases}
$$

[Hint: Proceed as we did in class by sketching the characteristics and then using the Rankine-Hugoniot Condition to determine the speed of the shock curves.]

