MATH 5588 – HOMEWORK 12 (DUE TUESDAY MAY 2)

1. Suppose H(p) is convex and superlinear. Show that $L = H^*$ is also convex and superlinear. [Hint: For convexity, you need to show that $L(\lambda x + (1 - \lambda)y) \leq \lambda L(x) + (1 - \lambda)L(y)$ for all x, y and $0 < \lambda < 1$, assuming the same is true for H. Write the left hand above using the definition of L and use the fact that $\max\{f + g\} \leq \max f + \max g$. For superlinearity, show that for every M > 0

$$\lim_{|q| \to \infty} \frac{L(q)}{|q|} \ge M.$$

To do this, write

$$L(q) = \max_{p \in \mathbb{R}} \{ pq - H(p) \}$$

and choose $p = \frac{q}{|q|}M$ to obtain

$$L(q) \ge M|q| - H(Mq/|q|).$$

Proceed from here with the rest of the proof.]

2. Suppose that $u - \varphi$ has a local maximum at $x \in \mathbb{R}$, which means that for some r > 0

$$u(y) - \varphi(y) \le u(x) - \varphi(x)$$
 for all $|x - y| < r$.

Assume also that u is bounded, that is for some C > 0 we have $|u(y)| \leq C$ for all $y \in \mathbb{R}$. Show that there exists another test function ψ such that $\psi'(x) = \varphi'(x)$ and

$$u(y) - \psi(y) \le u(x) - \psi(x)$$
 for all $y \in \mathbb{R}$.

Thus, we can turn the local max (or min) in the definition of viscosity solutions into a global max (or min) without loss of generality. [Hint: Define

$$\psi(y) = \varphi(y) + K(x-y)^2$$

for a carefully chosen constant K.]

3. Consider the following optimal control problem: The state $x(t) \in \mathbb{R}^n$ obeys the dynamics

$$\dot{x}(s) = \alpha(s)$$
 for $t < s \le T$ and $x(t) = x$

where $\alpha : [0,T] \to \mathbb{R}^n$ is the control, and the cost is

$$C_{x,t}(\alpha) = \int_t^T |\alpha(s)|^2 ds + x(T)^2.$$

Find the Hamilton-Jacobi-Bellman equation for the value function

$$u(x,t) = \min_{\alpha:[0,T] \to \mathbb{R}^n} C_{x,t}(\alpha).$$

4. Repeat problem 3 for the dynamics

$$\dot{x}(s) = x(s) + \alpha(s)$$

where $\alpha : [0,T] \to \mathbb{R}^n$.

5. Repeat problem 3 for the dynamics

$$\dot{x}(s) = \mathbf{1}\alpha(s)$$

where $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^n$ and $\alpha : [0, T] \to \mathbb{R}$.