## Math 5588 - Homework 2 (Due Thursday January 26)

In all problems $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $u$ is a real-valued function on $\mathbb{R}^{n}, u: \mathbb{R}^{n} \rightarrow \mathbb{R}$. This aim of this homework is to give you practice with multi-variable calculus.

1. Let $|x|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.
(a) Show that for $x \neq 0$

$$
\frac{\partial}{\partial x_{i}}|x|=\frac{x_{i}}{|x|} .
$$

(b) Show that for $x \neq 0$

$$
\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}|x|=\frac{\delta_{i j}}{|x|}-\frac{x_{i} x_{j}}{|x|^{3}},
$$

where $\delta_{i j}$ is the Kronecker delta defined by

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

(c) Show that for $x \neq 0$

$$
\Delta|x|=\frac{n-1}{|x|}
$$

2. Find all real numbers $\alpha$ for which $u(x)=|x|^{\alpha}$ is a solution of Laplace's equation

$$
\Delta u(x)=0 \quad \text { for } x \neq 0
$$

3. Let $1 \leq p \leq \infty$. The $p$-Laplacian is defined by

$$
\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

for $1 \leq p<\infty$, and

$$
\Delta_{\infty} u:=\frac{1}{|\nabla u|^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{x_{i} x_{j}} u_{x_{i}} u_{x_{j}}
$$

Notice that $\Delta_{2} u=\Delta u$. A function $u$ is called $p$-harmonic if $\Delta_{p} u=0$.
(a) Show that

$$
\Delta_{p} u=|\nabla u|^{p-2}\left(\Delta u+(p-2) \Delta_{\infty} u\right) .
$$

(b) Show that

$$
\Delta_{\infty} u=\lim _{p \rightarrow \infty} \frac{1}{p}|\nabla u|^{2-p} \Delta_{p} u .
$$

4. Let $1 \leq p \leq \infty$. Find all real numbers $\alpha$ for which the function $u(x)=|x|^{\alpha}$ is $p$-harmonic away from $x=0$.
5. Let $u, w \in C^{2}(\bar{U})$ where $U \subseteq \mathbb{R}^{n}$ is open and bounded. Show that for $1 \leq p<\infty$

$$
\int_{U} u \Delta_{p} w d x=\int_{\partial U} u|\nabla w|^{p-2} \frac{\partial w}{\partial \nu} d S-\int_{U}|\nabla w|^{p-2} \nabla u \cdot \nabla w d x .
$$

[Hint: Use one of the integration by parts formulas in the appendix of the course notes.]

