Math 5588 - Homework 3 (Due Thursday February 2)

1. Find and solve the Euler-Lagrange equation for the functional

$$
I(u)=\int_{0}^{\log (2)} u(x)^{2}+\left(u^{\prime}(x)\right)^{2} d x
$$

subject to boundary conditions $u(0)=0$ and $u(\log (2))=1$, where \log is the natural logarithm. Do you think your solution is a minimum or a maximum (or neither)?
2. Find the Euler-Lagrange equation for the functional

$$
I(u)=\int_{0}^{\pi} u(x)^{2}-\left(u^{\prime}(x)\right)^{2} d x
$$

subject to boundary conditions $u(0)=u(\pi)=0$. Then find all solutions of the EulerLagrange equation (as a one-parameter family) and evaluate I on all solutions.
3. Find the Euler-Lagrange equation for the functional

$$
I(u)=\int_{U}(f(x)-u(x))^{2}+\lambda \varphi(|\nabla u(x)|) d x
$$

where $f: U \rightarrow \mathbb{R}, \varphi: \mathbb{R} \rightarrow \mathbb{R}$, and λ is a constant.
4. Show that the Euler-Lagrange equation for the functional

$$
I(u)=\int_{U} \frac{1}{p}|\nabla u(x)|^{p}-u(x) f(x) d x
$$

is the p-Laplace equation

$$
-\Delta_{p} u=f \text { in } U .
$$

[Hint: The p-Laplacian was defined in Homework 2.]
5. Find the Euler-Lagrange equation for the functional

$$
I(u)=\int_{U}(\Delta u(x))^{2} d x .
$$

[Hint: Proceed as in the proof of the Euler-Lagrange equation from class. That is, let φ be smooth with compact support in U and compute

$$
\left.\frac{d}{d t}\right|_{t=0} I(u+t \varphi)=0 .
$$

Use integration by parts and the vanishing lemma to find the Euler-Lagrange equation.]

