Math 5588 - Homework 4 (Due Thursday February 9)

1. Consider the following version of the isoperimetric problem:

$$
\max _{\substack{u:[-1,1] \rightarrow \mathbb{R} \\ u(-1)=0=u(1)}} \int_{-1}^{1} u(x) d x \text { subject to } \int_{-1}^{1} \sqrt{1+u^{\prime}(x)^{2}} d x=L,
$$

where $L>2$. Show that the optimal curve $C(x)=(x, u(x))$ must be a segment of a circle. [Hint: Proceed in a similar fashion to the Brachistochrone problem. In particular, after reducing the Euler-Lagrange equation to a first order ODE, you should solve it by reparamaterizing the curve C in terms of the angle θ between the tangent vector to C and the x-axis.]
2. Consider the constrained problem

$$
\min _{\substack{u: U \rightarrow \mathbb{R} \\ u=0 \text { on } \partial U}} \int_{U}|\nabla u|^{2} d x \text { subject to } \int_{U} u^{2} d x=1
$$

Show that any minimizer is a solution of the eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda u, & \text { in } U \\ u=0, & \text { on } \partial U\end{cases}
$$

where $\lambda>0$ is given by

$$
\lambda=\int_{U}|\nabla u|^{2} d x
$$

[Hint: To show that $\lambda>0$ and verify the formula for λ, multiply by u on both sides of the PDE and integrate by parts.]
3. Show that the plane

$$
u(x)=a \cdot x+b
$$

solves the minimal surface equation on $U=\mathbb{R}^{n}$, where $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
4. Show that for $n=2$ the Scherk surface

$$
u(x)=\log \left(\frac{\cos \left(x_{1}\right)}{\cos \left(x_{2}\right)}\right)
$$

solves the minimal surface equation on the box $U=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{2}$.

