MATH 5588 – HOMEWORK 7 (DUE THURSDAY MARCH 9)

Recall a matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is symmetric if $a_{ij} = a_{ji}$, so that $A^T = A$. We say a symmetric matrix A is *positive definite*, written $A \ge 0$, if

$$v^T A v = \sum_{i=1}^n \sum_{j=1}^n a_{ij} v_i v_j \ge 0$$
 for all $v \in \mathbb{R}^n$.

We write $A \leq B$ whenever $B - A \geq 0$.

1. A real symmetric matrix $A \in \mathbb{R}^{n \times n}$ has *n* real eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, counted with multiplicity. Show that *A* is positive definite $(A \geq 0)$ if and only if $\lambda_1 \geq 0$. [Hint: Recall that

$$\lambda_1 = \min_{v \neq 0} \frac{v^T A v}{v^T v}.$$

The right hand side above is called a Rayleigh quotient.]

2. Let $A \in \mathbb{R}^{2 \times 2}$ be a symmetric matrix. Show that A is positive definite $(A \ge 0)$ if and only if

 $det(A) \ge 0$ and $Trace(A) \ge 0$.

- 3. (a) Let $A, B \in \mathbb{R}^{n \times n}$ be diagonal matrices. Show that $A \leq B$ if and only if $a_{ii} \leq b_{ii}$ for all $i \in \{1, \ldots, n\}$.
 - (b) Give an example of diagonal matrices $A, B \in \mathbb{R}^{n \times n}$ for which neither $A \leq B$ nor $B \leq A$ hold.
- 4. Consider a nonlinear PDE in the form

$$H(x, \nabla u, \nabla^2 u) + F(x, \nabla u) = 0.$$
(1)

Assume that H is linear in $\nabla^2 u$, that is,

$$\lambda H(x, p, A) + H(x, p, B) = H(x, p, \lambda A + B)$$

for any λ, A, B . Such a PDE is called *quasilinear*. Show that (1) is elliptic if and only if

$$A \le 0 \implies H(x, p, A) \ge 0.$$

5. Consider the quasilinear PDE

$$-\sum_{i=1}^{n}\sum_{j=1}^{n}b_{ij}(x,\nabla u)u_{x_{i}x_{j}}+F(x,\nabla u)=0.$$

Show that this PDE is elliptic if the matrix $B(x,p) = (b_{ij}(x,p))$ is symmetric and positive definite for all x and p. [Hint: Note that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}(x, \nabla u) u_{x_i x_j} = \operatorname{Trace}(B(x, \nabla u) \nabla^2 u).$$

Use problem 4. You may want to diagonalize B or $A = \nabla^2 u$ by an orthogonal transformation and use the property Trace(AB) = Trace(BA).] 6. Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be a positive definite symmetric matrix and consider the linear elliptic PDE

$$-\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}u_{x_ix_j} = f.$$
 (2)

(a) The fundamental solution of (2) satisfies

$$-\sum_{i=1}^n \sum_{j=1}^n a_{ij} u_{x_i x_j} = \delta.$$

Let $\hat{u}(k)$ be the Fourier transform of u, and find S(k) so that

$$S(k)\widehat{u}(k) = 1.$$

The polynomial S(k) is called the *symbol* of the second order differential operator in (2).

(b) Show that when n = 2, the equation

$$S(k) = 1$$

describes an ellipse in the $k = (k_1, k_2)$ -plane. This is the reason for the terminology *elliptic*. [Aside: For $n \ge 3$, S(k) = 1 describes an *n*-dimensional ellipse.]

7. Consider a functional independent of u, that is

$$I(u) = \int_U L(x, \nabla u) \, dx.$$

Show that the corresponding Euler-Lagrange equation

$$-\operatorname{div}\left(\nabla_p L(x, \nabla u)\right) = -\sum_{i=1}^n \frac{\partial}{\partial x_i} \left(L_{p_i}(x, \nabla u)\right) = 0$$

is elliptic if L is convex. [Hint: Use the chain rule to expand the divergence and then use problem 5. Recall L is convex if

$$\sum_{i=1}^{n} \sum_{j=1}^{n} L_{p_i p_j}(x, p) v_i v_j \ge 0 \quad \text{for all } v \in \mathbb{R}^n$$