Math 5588 - Homework 7 (Due Thursday March 9)

Recall a matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is symmetric if $a_{i j}=a_{j i}$, so that $A^{T}=A$. We say a symmetric matrix A is positive definite, written $A \geq 0$, if

$$
v^{T} A v=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} v_{j} \geq 0 \quad \text { for all } v \in \mathbb{R}^{n}
$$

We write $A \leq B$ whenever $B-A \geq 0$.

1. A real symmetric matrix $A \in \mathbb{R}^{n \times n}$ has n real eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$, counted with multiplicity. Show that A is positive definite $(A \geq 0)$ if and only if $\lambda_{1} \geq 0$. [Hint: Recall that

$$
\lambda_{1}=\min _{v \neq 0} \frac{v^{T} A v}{v^{T} v} .
$$

The right hand side above is called a Rayleigh quotient.]
2. Let $A \in \mathbb{R}^{2 \times 2}$ be a symmetric matrix. Show that A is positive definite $(A \geq 0)$ if and only if

$$
\operatorname{det}(A) \geq 0 \quad \text { and } \quad \operatorname{Trace}(A) \geq 0
$$

3. (a) Let $A, B \in R^{n \times n}$ be diagonal matrices. Show that $A \leq B$ if and only if $a_{i i} \leq b_{i i}$ for all $i \in\{1, \ldots, n\}$.
(b) Give an example of diagonal matrices $A, B \in \mathbb{R}^{n \times n}$ for which neither $A \leq B$ nor $B \leq A$ hold.
4. Consider a nonlinear PDE in the form

$$
\begin{equation*}
H\left(x, \nabla u, \nabla^{2} u\right)+F(x, \nabla u)=0 . \tag{1}
\end{equation*}
$$

Assume that H is linear in $\nabla^{2} u$, that is,

$$
\lambda H(x, p, A)+H(x, p, B)=H(x, p, \lambda A+B)
$$

for any λ, A, B. Such a PDE is called quasilinear. Show that (1) is elliptic if and only if

$$
A \leq 0 \Longrightarrow H(x, p, A) \geq 0
$$

5. Consider the quasilinear PDE

$$
-\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i j}(x, \nabla u) u_{x_{i} x_{j}}+F(x, \nabla u)=0 .
$$

Show that this PDE is elliptic if the matrix $B(x, p)=\left(b_{i j}(x, p)\right)$ is symmetric and positive definite for all x and p. [Hint: Note that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i j}(x, \nabla u) u_{x_{i} x_{j}}=\operatorname{Trace}\left(B(x, \nabla u) \nabla^{2} u\right) .
$$

Use problem 4. You may want to diagonalize B or $A=\nabla^{2} u$ by an orthogonal transformation and use the property $\operatorname{Trace}(A B)=\operatorname{Trace}(B A)$.]
6. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a positive definite symmetric matrix and consider the linear elliptic PDE

$$
\begin{equation*}
-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} u_{x_{i} x_{j}}=f . \tag{2}
\end{equation*}
$$

(a) The fundamental solution of (2) satisfies

$$
-\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} u_{x_{i} x_{j}}=\delta
$$

Let $\widehat{u}(k)$ be the Fourier transform of u, and find $S(k)$ so that

$$
S(k) \widehat{u}(k)=1 .
$$

The polynomial $S(k)$ is called the symbol of the second order differential operator in (2).
(b) Show that when $n=2$, the equation

$$
S(k)=1
$$

describes an ellipse in the $k=\left(k_{1}, k_{2}\right)$-plane. This is the reason for the terminology elliptic. [Aside: For $n \geq 3, S(k)=1$ describes an n-dimensional ellipse.]
7. Consider a functional independent of u, that is

$$
I(u)=\int_{U} L(x, \nabla u) d x \text {. }
$$

Show that the corresponding Euler-Lagrange equation

$$
-\operatorname{div}\left(\nabla_{p} L(x, \nabla u)\right)=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(L_{p_{i}}(x, \nabla u)\right)=0
$$

is elliptic if L is convex. [Hint: Use the chain rule to expand the divergence and then use problem 5. Recall L is convex if

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} L_{p_{i} p_{j}}(x, p) v_{i} v_{j} \geq 0 \quad \text { for all } v \in \mathbb{R}^{n}
$$

