Math 5588 - Homework 8 (Due Thursday March 23)

1. Use an argument based on the maximum principle to show that if $\max f \geq 0$,

$$
u+|\nabla u|^{2}-\Delta u=f(x) \quad \text { for }|x| \leq 1
$$

and $u(x)=0$ for $|x|=1$ then

$$
u(x) \leq \max f \quad \text { for all }|x| \leq 1
$$

What happens if $\max f<0$?
2. Use the maximum principle to show that if

$$
-\Delta u(x)=f(x) \quad \text { for }|x|<1
$$

and $u(x)=0$ for $|x|=1$ then

$$
u(x) \leq \frac{\max f}{2 n}\left(1-|x|^{2}\right) \quad \text { for all }|x| \leq 1 .
$$

[Hint: Note that $-\Delta v=2 C n$ for $v(x)=C\left(1-|x|^{2}\right)$. Choose C so that $-\Delta v \geq-\Delta u$ and use the maximum (or comparison) principle.]
3. Assume $u: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous increasing function, but not necessarily differentiable. Show that u is a viscosity supersolution of $u^{\prime}(x)=0$. [Hint: You need to show that if $u-\varphi$ has a local minimum at x_{0} then $\varphi^{\prime}\left(x_{0}\right) \geq 0$, where φ is a smooth test function. Since $u-\varphi$ has a local minimum at x_{0} there exists $r>0$ such that

$$
u(x)-\varphi(x) \geq u\left(x_{0}\right)-\varphi\left(x_{0}\right) \quad \text { for }\left|x-x_{0}\right| \leq r .
$$

Choose $x=x_{0}-h$ for $h>0$ and send $h \rightarrow 0$ to show that $\varphi^{\prime}\left(x_{0}\right) \geq 0$. Also note that a similar argument shows u is a viscosity subsolution of $-u^{\prime}(x)=0$.]
4. Show that $u(x)=-|x|$ is a viscosity solution of $u^{\prime}(x)^{2}-1=0$. [Hint: The only point you need to check is $x=0$. You need to show that if $u-\varphi$ has a local maximum at $x=0$ then $-1 \leq \varphi^{\prime}(x) \leq 1$. Use an argument similar to the previous question. For the supersolution property at $x=0$, show that there are no smooth test functions φ for which $u-\varphi$ has a local minimum at $x=0$ by showing that any such function would satisfy $\varphi^{\prime}(0) \geq 1$ and $\varphi^{\prime}(0) \leq-1$ (draw a picture of a smooth function touching from below at $x=0)$.]

