MATH 5588 – HOMEWORK 8 (DUE THURSDAY MARCH 23)

1. Use an argument based on the maximum principle to show that if $\max f \ge 0$,

$$u + |\nabla u|^2 - \Delta u = f(x) \text{ for } |x| \le 1$$

and u(x) = 0 for |x| = 1 then

$$u(x) \le \max f$$
 for all $|x| \le 1$.

What happens if $\max f < 0$?

2. Use the maximum principle to show that if

$$-\Delta u(x) = f(x) \quad \text{for } |x| < 1$$

and u(x) = 0 for |x| = 1 then

$$u(x) \le \frac{\max f}{2n}(1-|x|^2)$$
 for all $|x| \le 1$.

[Hint: Note that $-\Delta v = 2Cn$ for $v(x) = C(1 - |x|^2)$. Choose C so that $-\Delta v \ge -\Delta u$ and use the maximum (or comparison) principle.]

3. Assume $u : \mathbb{R} \to \mathbb{R}$ is a continuous *increasing* function, but not necessarily differentiable. Show that u is a viscosity supersolution of u'(x) = 0. [Hint: You need to show that if $u - \varphi$ has a local minimum at x_0 then $\varphi'(x_0) \ge 0$, where φ is a smooth test function. Since $u - \varphi$ has a local minimum at x_0 there exists r > 0 such that

$$u(x) - \varphi(x) \ge u(x_0) - \varphi(x_0) \quad \text{for } |x - x_0| \le r.$$

Choose $x = x_0 - h$ for h > 0 and send $h \to 0$ to show that $\varphi'(x_0) \ge 0$. Also note that a similar argument shows u is a viscosity subsolution of -u'(x) = 0.]

4. Show that u(x) = -|x| is a viscosity solution of $u'(x)^2 - 1 = 0$. [Hint: The only point you need to check is x = 0. You need to show that if $u - \varphi$ has a local maximum at x = 0 then $-1 \le \varphi'(x) \le 1$. Use an argument similar to the previous question. For the supersolution property at x = 0, show that there are no smooth test functions φ for which $u - \varphi$ has a local minimum at x = 0 by showing that any such function would satisfy $\varphi'(0) \ge 1$ and $\varphi'(0) \le -1$ (draw a picture of a smooth function touching from below at x = 0).]