Math 5588 - Homework 9 (Due Thursday April 6)

1. Prove the Leibniz integral rule

$$
\frac{d}{d x}\left(\int_{a(x)}^{b(x)} f(x, t) d t\right)=f(x, b(x)) b^{\prime}(x)-f(x, a(x)) a^{\prime}(x)+\int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, t) d t
$$

[Hint: For $a, b, x \in \mathbb{R}$ define

$$
F(a, b, x)=\int_{a}^{b} f(x, t) d t
$$

and apply the multivariate chain rule

$$
\frac{d}{d x} F(a(x), b(x), x)=\frac{\partial F}{\partial a} a^{\prime}(x)+\frac{\partial F}{\partial b} b^{\prime}(x)+\frac{\partial F}{\partial x} \cdot 1 .
$$

]
2. Solve the wave equation in three dimensions $n=3$ with initial data $u(x, 0)=0$ and $u_{t}(x, 0)=x_{2}$ using Kirchoff's formula.
3. Let $u(x, t)$ be a solution of the damped wave equation

$$
\left\{\begin{aligned}
u_{t t}+\gamma u_{t}-\Delta u & =0 & & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u & =f & & \text { on } \mathbb{R}^{n} \times\{t=0\} \\
u_{t} & =g & & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{aligned}\right.
$$

where $\gamma \geq 0$. Fix $x_{0} \in \mathbb{R}^{n}, t_{0}>0$, and define the backwards wave cone

$$
K\left(x_{0}, t_{0}\right):=\left\{(x, t): 0 \leq t \leq t_{0} \text { and }\left|x-x_{0}\right| \leq t_{0}-t\right\} .
$$

Prove that if $f \equiv g \equiv 0$ in $B\left(x_{0}, t_{0}\right) \times\{t=0\}$, then $u \equiv 0$ in the cone $K\left(x_{0}, t_{0}\right)$. [Hint: Mimic the proof from class, in particular use the same energy.]
4. Repeat problem 3 for the nonlinear wave equation

$$
u_{t t}-\Delta u+u^{3}=0
$$

[Hint: You will need to modify the energy to account for the u^{3} term.]
5. Sketch a triangulation of the following domains so that all triangles have side length at most $\frac{1}{2}$:
(a) A unit square.
(b) An isosceles triangle with vertices $\left(-\frac{1}{2}, 0\right),\left(\frac{1}{2}, 0\right)$, and $(0,1)$.
(c) The square $[-2,2]^{2}$ with the hole $[-1,1]^{2}$ removed.
(d) The unit disk.
(e) The annulus $1 \leq|x| \leq 2$.
6. For a given vertex $v \in \mathbb{R}^{2}$ of a triangulation, the corresponding vertex polygon is the union of all triangles for which v is a vertex. Describe the vertex polygons for a triangulation that uses regular equilateral triangles.

