MATH 5588 — HOMEWORK 9 SOLUTIONS

1. Prove the Leibniz integral rule

d b(z) b(=) g f
2 [ swndt) = fas@w @ - feow@d@+ [ o
dx a(z) a(z) ox
[Hint: For a,b,z € R define
b
F(a,b,x) = / f(x,t)dt,
and apply the multivariate chain rule
d _oF oF , oF
%F(a(m), b(z),z) = B " (x)+ %b () + B 1.
|
Solution. We have
oF baf oF OF
%(a,b, I’) - ; %($7t) dt7 %(a,b,x) - —f(l?,(l) and %(aaba :B) - f(l'ab)
Applying the multivariate chain rule we have
d _OF , oF , OF
%F(CL(ZL‘), b(l’), J:) - %((Z(l‘), b(x),x)a (.I) + %(a’(w% b(.’IZ‘),.I‘)b (x) + %(CL(%), b(x)vx)
— ~f(a(@)d (@) + fa b @) + [ L ar
a(x)
This completes the proof. O

2. Solve the wave equation in three dimensions n = 3 with initial data u(z,0) = 0 and
ut(x,0) = x2 using Kirchoff’s formula.
Solution. By Kirchoff’s formula (¢ = 1)

1 t
t - = -
u(z,t) ty2dS(y) 0B (x,t)| Jop(us

0Bz, )| Jopw
Since the function v(y) = y2 is harmonic (all second derivatives vanish), the mean value
formula gives

Y2 dS(y).

1

PN y2dS(y
0B 0] Jopn 2P

~10B(@. D) Jop v(y) dS(y) = v(z) = 2.

Therefore u(x) = xot. By the way, the solution is unchanged if ¢ # 1. Ol



3. Let u(x,t) be a solution of the damped wave equation

ug +yur — Au=0 in R" x (0,00)
u=f onR"x {t =0}
ur=g onR"x {t=0},

where v > 0. Fix xg € R", ty > 0, and define the backwards wave cone
K(zo,t0) := {(x,t) :0<t <ty and |z — x| <tp— t}.

Prove that if f = g = 0 in B(xo,t0) x {t = 0}, then v = 0 in the cone K (zg,%p). [Hint:
Mimic the proof from class, in particular use the same energy.|

Solution. We mimic the proof from class. Define the energy

1

e(t) = / ug(z, 1) + |Vu(z, t)|* de.
2 JB(zto—t)

Then as in the notes and class

d 1
o _ —/ u? + |Vu\2 dsS +/ uptlyy + Vu - Vug dx
dt 2 JoB(z,to—t) Bl(x,to—1)
ou 1, 5 9
= —up — —(uy + |Vul?)dS + Uptiyr — U A dx
dB(z,to—t) v 2 B(xz,to—t)
ou 1, 9
= —ur — =(up + |Vul*) dS + ug(uy — Au) dx
dB(z,to—t) ov 2 B(xz,to—t)

1
= / @ut — —(u? +|Vul|?)dS — 7/ u? d.
8B (x,to—t) OV 2 Bz, to—t)

Since 7 > 0, the second term is non-positive (< 0), and by the same argument we made
in class, the first term is also less than or equal to zero. Hence de/dt < 0, and the proof
proceeds in the same way as in the notes from here. O

4. Repeat problem 3 for the nonlinear wave equation
Utt—Au+u3 =0.

[Hint: You will need to modify the energy to account for the u® term.]

Solution. The proof is similar to the previous problem, except here we use the energy

e(t) = / 11%(3:,75)2 + }]Vu(:z:,t)|2 + }u(az,t)‘l dx.
B(z,to—t) 2 2 4



Then we have

d 1 1 1
ae_ —/ fuf + Z|Vul]? + ZutdS + / wptiy + Vu - Vg + udug de
dt OB(x,to—t) 2 2 4 B(a,to—t)
0 1 1 1
= / —uut — fuf — 7|Vu\2 — —utds —|—/ gy — wAu + vy dz
dB(z,to—t) v 2 2 4 B(x,to—t)
15 1 1 1
= / —uut — fuf — —|Vu* — ZutdS +/ wg(ugy — Au + u?) de
OB(x,to—t) OV 2 2 4 Bl(a,to—t)

1 1 1
/ %ut — —u? — Z|Vuf* = ZutdS.
aB(I,toft) 81/ 2 2 4

As in the notes

g:jut < |Vaul|ug| < %uf + %]Vu\Q.
Therefore
de < 1 / utdS <0,
dt 4 JoB(x,to—t)
and the proof proceeds in the same way as in the notes. ]

. Sketch a triangulation of the following domains so that all triangles have side length at
most +:
2

(a) A unit square.
(b) An isosceles triangle with vertices (—3,0),(3,0), and (0,1).
(c) The square [—2,2]? with the hole [~1,1]? removed.
(d) The unit disk.
)

(e) The annulus 1 < |z| < 2.
Solution. See next page. O

. For a given vertex v € R? of a triangulation, the corresponding vertez polygon is the union
of all triangles for which v is a vertex. Describe the vertex polygons for a triangulation
that uses regular equilateral triangles.

Solution. Equilateral triangles have equal angles of 7/3. Each vertix is thus connected
to exactly 6 triangles and the vertex polygons are regular hexagons (that is, the hexagon
with equal interior angles). Ol
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