
Math 5588 – Homework 9 Solutions

1. Prove the Leibniz integral rule
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Solution. We have
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Applying the multivariate chain rule we have
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This completes the proof.

2. Solve the wave equation in three dimensions n = 3 with initial data u(x, 0) = 0 and
u

t

(x, 0) = x2 using Kirchoff’s formula.

Solution. By Kirchoff’s formula (c = 1)
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Since the function v(y) = y2 is harmonic (all second derivatives vanish), the mean value
formula gives
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Therefore u(x) = x2t. By the way, the solution is unchanged if c 6= 1.



3. Let u(x, t) be a solution of the damped wave equation
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where � � 0. Fix x0 2 Rn, t0 > 0, and define the backwards wave cone
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Prove that if f ⌘ g ⌘ 0 in B(x0, t0)⇥ {t = 0}, then u ⌘ 0 in the cone K(x0, t0). [Hint:
Mimic the proof from class, in particular use the same energy.]

Solution. We mimic the proof from class. Define the energy
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Since � � 0, the second term is non-positive ( 0), and by the same argument we made
in class, the first term is also less than or equal to zero. Hence de/dt  0, and the proof
proceeds in the same way as in the notes from here.

4. Repeat problem 3 for the nonlinear wave equation
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[Hint: You will need to modify the energy to account for the u
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Solution. The proof is similar to the previous problem, except here we use the energy
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Then we have
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As in the notes
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and the proof proceeds in the same way as in the notes.

5. Sketch a triangulation of the following domains so that all triangles have side length at
most 1

2 :

(a) A unit square.

(b) An isosceles triangle with vertices (�1
2 , 0),(

1
2 , 0), and (0, 1).

(c) The square [�2, 2]2 with the hole [�1, 1]2 removed.

(d) The unit disk.

(e) The annulus 1  |x|  2.

Solution. See next page.

6. For a given vertex v 2 R2 of a triangulation, the corresponding vertex polygon is the union
of all triangles for which v is a vertex. Describe the vertex polygons for a triangulation
that uses regular equilateral triangles.

Solution. Equilateral triangles have equal angles of ⇡/3. Each vertix is thus connected
to exactly 6 triangles and the vertex polygons are regular hexagons (that is, the hexagon
with equal interior angles).
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