Math 5588 - Homework 9 Solutions

1. Prove the Leibniz integral rule

$$
\frac{d}{d x}\left(\int_{a(x)}^{b(x)} f(x, t) d t\right)=f(x, b(x)) b^{\prime}(x)-f(x, a(x)) a^{\prime}(x)+\int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, t) d t
$$

[Hint: For $a, b, x \in \mathbb{R}$ define

$$
F(a, b, x)=\int_{a}^{b} f(x, t) d t
$$

and apply the multivariate chain rule

$$
\frac{d}{d x} F(a(x), b(x), x)=\frac{\partial F}{\partial a} a^{\prime}(x)+\frac{\partial F}{\partial b} b^{\prime}(x)+\frac{\partial F}{\partial x} \cdot 1
$$

]

Solution. We have

$$
\frac{\partial F}{\partial x}(a, b, x)=\int_{a}^{b} \frac{\partial f}{\partial x}(x, t) d t, \quad \frac{\partial F}{\partial a}(a, b, x)=-f(x, a) \quad \text { and } \quad \frac{\partial F}{\partial b}(a, b, x)=f(x, b) .
$$

Applying the multivariate chain rule we have

$$
\begin{aligned}
\frac{d}{d x} F(a(x), b(x), x) & =\frac{\partial F}{\partial a}(a(x), b(x), x) a^{\prime}(x)+\frac{\partial F}{\partial b}(a(x), b(x), x) b^{\prime}(x)+\frac{\partial F}{\partial x}(a(x), b(x), x) \\
& =-f(x, a(x)) a^{\prime}(x)+f(x, b(x)) b^{\prime}(x)+\int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, t) d t .
\end{aligned}
$$

This completes the proof.
2. Solve the wave equation in three dimensions $n=3$ with initial data $u(x, 0)=0$ and $u_{t}(x, 0)=x_{2}$ using Kirchoff's formula.

Solution. By Kirchoff's formula $(c=1)$

$$
u(x, t)=\frac{1}{|\partial B(x, t)|} \int_{\partial B(x, t)} t y_{2} d S(y)=\frac{t}{|\partial B(x, t)|} \int_{\partial B(x, t)} y_{2} d S(y) .
$$

Since the function $v(y)=y_{2}$ is harmonic (all second derivatives vanish), the mean value formula gives

$$
\frac{1}{|\partial B(x, t)|} \int_{\partial B(x, t)} y_{2} d S(y)=\frac{1}{|\partial B(x, t)|} \int_{\partial B(x, t)} v(y) d S(y)=v(x)=x_{2} .
$$

Therefore $u(x)=x_{2} t$. By the way, the solution is unchanged if $c \neq 1$.
3. Let $u(x, t)$ be a solution of the damped wave equation

$$
\left\{\begin{aligned}
u_{t t}+\gamma u_{t}-\Delta u & =0 & & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u & =f & & \text { on } \mathbb{R}^{n} \times\{t=0\} \\
u_{t} & =g & & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{aligned}\right.
$$

where $\gamma \geq 0$. Fix $x_{0} \in \mathbb{R}^{n}, t_{0}>0$, and define the backwards wave cone

$$
K\left(x_{0}, t_{0}\right):=\left\{(x, t): 0 \leq t \leq t_{0} \text { and }\left|x-x_{0}\right| \leq t_{0}-t\right\} .
$$

Prove that if $f \equiv g \equiv 0$ in $B\left(x_{0}, t_{0}\right) \times\{t=0\}$, then $u \equiv 0$ in the cone $K\left(x_{0}, t_{0}\right)$. [Hint: Mimic the proof from class, in particular use the same energy.]

Solution. We mimic the proof from class. Define the energy

$$
e(t)=\frac{1}{2} \int_{B\left(x, t_{0}-t\right)} u_{t}(x, t)^{2}+|\nabla u(x, t)|^{2} d x .
$$

Then as in the notes and class

$$
\begin{aligned}
\frac{d e}{d t} & =-\frac{1}{2} \int_{\partial B\left(x, t_{0}-t\right)} u_{t}^{2}+|\nabla u|^{2} d S+\int_{B\left(x, t_{0}-t\right)} u_{t} u_{t t}+\nabla u \cdot \nabla u_{t} d x \\
& =\int_{\partial B\left(x, t_{0}-t\right)} \frac{\partial u}{\partial \nu} u_{t}-\frac{1}{2}\left(u_{t}^{2}+|\nabla u|^{2}\right) d S+\int_{B\left(x, t_{0}-t\right)} u_{t} u_{t t}-u_{t} \Delta u d x \\
& =\int_{\partial B\left(x, t_{0}-t\right)} \frac{\partial u}{\partial \nu} u_{t}-\frac{1}{2}\left(u_{t}^{2}+|\nabla u|^{2}\right) d S+\int_{B\left(x, t_{0}-t\right)} u_{t}\left(u_{t t}-\Delta u\right) d x \\
& =\int_{\partial B\left(x, t_{0}-t\right)} \frac{\partial u}{\partial \nu} u_{t}-\frac{1}{2}\left(u_{t}^{2}+|\nabla u|^{2}\right) d S-\gamma \int_{B\left(x, t_{0}-t\right)} u_{t}^{2} d x .
\end{aligned}
$$

Since $\gamma \geq 0$, the second term is non-positive (≤ 0), and by the same argument we made in class, the first term is also less than or equal to zero. Hence $d e / d t \leq 0$, and the proof proceeds in the same way as in the notes from here.
4. Repeat problem 3 for the nonlinear wave equation

$$
u_{t t}-\Delta u+u^{3}=0 .
$$

[Hint: You will need to modify the energy to account for the u^{3} term.]

Solution. The proof is similar to the previous problem, except here we use the energy

$$
e(t)=\int_{B\left(x, t_{0}-t\right)} \frac{1}{2} u_{t}(x, t)^{2}+\frac{1}{2}|\nabla u(x, t)|^{2}+\frac{1}{4} u(x, t)^{4} d x .
$$

Then we have

$$
\begin{aligned}
\frac{d e}{d t} & =-\int_{\partial B\left(x, t_{0}-t\right)} \frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2}+\frac{1}{4} u^{4} d S+\int_{B\left(x, t_{0}-t\right)} u_{t} u_{t t}+\nabla u \cdot \nabla u_{t}+u^{3} u_{t} d x \\
& =\int_{\partial B\left(x, t_{0}-t\right)} \frac{\partial u}{\partial \nu} u_{t}-\frac{1}{2} u_{t}^{2}-\frac{1}{2}|\nabla u|^{2}-\frac{1}{4} u^{4} d S+\int_{B\left(x, t_{0}-t\right)} u_{t} u_{t t}-u_{t} \Delta u+u^{3} u_{t} d x \\
& =\int_{\partial B\left(x, t_{0}-t\right)} \frac{\partial u}{\partial \nu} u_{t}-\frac{1}{2} u_{t}^{2}-\frac{1}{2}|\nabla u|^{2}-\frac{1}{4} u^{4} d S+\int_{B\left(x, t_{0}-t\right)} u_{t}\left(u_{t t}-\Delta u+u^{3}\right) d x \\
& =\int_{\partial B\left(x, t_{0}-t\right)} \frac{\partial u}{\partial \nu} u_{t}-\frac{1}{2} u_{t}^{2}-\frac{1}{2}|\nabla u|^{2}-\frac{1}{4} u^{4} d S .
\end{aligned}
$$

As in the notes

$$
\frac{\partial u}{\partial \nu} u_{t} \leq|\nabla u|\left|u_{t}\right| \leq \frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2} .
$$

Therefore

$$
\frac{d e}{d t} \leq-\frac{1}{4} \int_{\partial B\left(x, t_{0}-t\right)} u^{4} d S \leq 0
$$

and the proof proceeds in the same way as in the notes.
5. Sketch a triangulation of the following domains so that all triangles have side length at most $\frac{1}{2}$:
(a) A unit square.
(b) An isosceles triangle with vertices $\left(-\frac{1}{2}, 0\right),\left(\frac{1}{2}, 0\right)$, and $(0,1)$.
(c) The square $[-2,2]^{2}$ with the hole $[-1,1]^{2}$ removed.
(d) The unit disk.
(e) The annulus $1 \leq|x| \leq 2$.

Solution. See next page.
6. For a given vertex $v \in \mathbb{R}^{2}$ of a triangulation, the corresponding vertex polygon is the union of all triangles for which v is a vertex. Describe the vertex polygons for a triangulation that uses regular equilateral triangles.

Solution. Equilateral triangles have equal angles of $\pi / 3$. Each vertix is thus connected to exactly 6 triangles and the vertex polygons are regular hexagons (that is, the hexagon with equal interior angles).
a)

$$
h^{2}+h^{2}=\frac{1}{4}, \quad h=\frac{1}{\sqrt{8}}=\frac{1}{2 \sqrt{2}}<\frac{1}{2} .
$$

b)

$$
\begin{aligned}
& 1^{2}+\left(\frac{1}{2}\right)^{2}=e^{2} \\
& l^{2}=\frac{5}{4}, \quad l=\frac{\sqrt{5}}{2}
\end{aligned}
$$

c)

Not to scale!
e) Similar.o.

