Math 5588 Midterm II Information

- The midterm will take place on Thursday, March 30, during class.
- The exam will cover lectures 8 through 15 .
- The exam is closed book. No textbooks, notes, or calculators are allowed.
- The formula sheet at the end of these sample problems will be provided in the midterm.
- The exam will have 5 questions. The first 3 will be short, and the last 2 will be longer and slightly more involved. Below are a collection of sample midterm questions for you to practice.

Sample questions

1. Give a brief answer to each question below.
(a) Do you expect Fourier transform to be useful in general for studying Burger's equation

$$
u_{t}+u_{x} u=0 ?
$$

Why or why not?
(b) Would you expect the maximum principle to be useful for PDEs of order 3 or higher? Why or why not?
2. Suppose that $u(x)$ solves

$$
u+a \cdot \nabla u-\Delta u=f \quad \text { in } \mathbb{R}^{n} .
$$

Find $\widehat{u}(k)$.
3. Suppose that $u(x, t)$ solves

$$
u_{t}+\Delta^{2} u=f
$$

Find $\widehat{u}(k, t)$, were the Fourier transform is taken in x only.
4. Recall the fundamental solution of the heat equation is given by

$$
\Phi^{t}(x)=\frac{1}{(4 \pi t)^{n / 2}} e^{-|x|^{2} / 4 t} .
$$

Use the Fourier transform to show that $\Phi^{t} * \Phi^{s}=\Phi^{t+s}$.
5. Suppose that $u(x, t)$ solves

$$
u_{t}+f * u=g,
$$

where $f(x)$ and $g(x)$ are given functions. Find $\widehat{u}(k, t)$, where the Fourier transform is taken in x only.
6. For $t>0$ let $u_{m}(x)$ be the solution of

$$
\left(I-\frac{t}{m} \Delta\right)^{m} u=f \text { in } \mathbb{R}^{n}
$$

Here, I is the identity operator $I u=u$.
(a) Show that

$$
u_{m}(x)=S_{m} * f,
$$

where

$$
\widehat{S_{m}}(k)=\frac{1}{(2 \pi)^{n / 2}} \frac{1}{\left(1+\frac{t}{m}|k|^{2}\right)^{m}} .
$$

(b) Show that

$$
\lim _{m \rightarrow \infty} \widehat{S_{m}}(k)=\frac{e^{-|k|^{2} t}}{(2 \pi)^{n / 2}}
$$

[Hint: Recall that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.]
(c) Show that

$$
\lim _{m \rightarrow \infty} u_{m}(x)=\Phi^{t} * f
$$

where Φ^{t} is the fundamental solution of the heat equation

$$
\Phi^{t}(x)=\frac{1}{(4 \pi t)^{n / 2}} e^{-|x|^{2} / 4 t} .
$$

7. Suppose that

$$
u-u \Delta u=0 \text { in } U
$$

and $u(x)=0$ for $x \in \partial U$, where $U \subseteq \mathbb{R}^{n}$ is open and bounded. Show that if $u \geq 0$ in U then $u \equiv 0$. [Hint: Maximum principle.]

Formula Sheet

$$
\begin{gathered}
\int_{U} u_{x_{i}} d x=\int_{\partial U} u \nu_{i} d S . \\
\int_{U} u \Delta v d x=\int_{\partial U} u \frac{\partial v}{\partial \nu} d S-\int_{U} \nabla u \cdot \nabla v d x \\
\int_{U} u \Delta v-v \Delta u d x=\int_{\partial U} u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu} d S \\
\int_{U} \Delta v d x=\int_{\partial U} \frac{\partial v}{\partial \nu} d S \\
\int_{U} u \operatorname{div}(F) d x=\int_{\partial U} u F \cdot \nu d S-\int_{U} \nabla u \cdot F d x . \\
\mathcal{F}(u)=\widehat{u}(k)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} u(x) e^{-i k \cdot x} d x . \\
\mathcal{F}^{-1}(\widehat{u})=u(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \widehat{u}(k) e^{i k \cdot x} d k . \\
\mathcal{F}\left(u_{x_{j}}\right)=i k_{j} \widehat{u}(k) . \\
\mathcal{F}(u * v)=(2 \pi)^{n / 2} \widehat{u}(k) \widehat{v}(k) . \\
\int_{\mathbb{R}^{n}}|\widehat{u}(k)|^{2} d k=\int_{\mathbb{R}^{n}}|u(x)|^{2} d x . \\
\mathcal{F}\left(e^{-|x|^{2} / 2}\right)=e^{-|k|^{2} / 2} .
\end{gathered}
$$

